Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 381-390 | Back to browse issues page

XML Persian Abstract Print

1- Soil Science Engineering Department, Agricultural Engineering & Technology Faculty, University of Tehran, Tehran, Iran, Soil Science Engineering Department, Agricultural Engineering & Technology Faculty, University of Tehran, Tehran, Iran , halikhan@ut.ac.ir
2- Soil Science Engineering Department, Agricultural Engineering & Technology Faculty, University of Tehran, Tehran, Iran
Abstract:   (7013 Views)
With urbanization expansion, application of concrete and construction materials is widely increasing throughout the world. Therefore, the use of a mechanism that can effectively extend the life of concrete structures is essential. Durable reinforced concrete structures are generally affected by the crack. Cracks in concrete are caused due to various reasons such as an environmental attack, overloading or accidental damage. Surface cracks in concrete facilitate the penetration of chemicals and corrosive chlorine, so as a result of these factors steel rebars corroded and caused the destruction of concrete structures. Calcium carbonate precipitates have proved their ability as a microbial sealant to fill the cracks and the gaps in Granites and sand. In this method, urea is hydrolyzed by the urease secreting bacteria and calcium carbonate is formed in the presence of calcium ion, which improves the stability and properties of concrete in the long term. Therefore, the use of microbial precipitation in concrete restoration can be considered as a natural and environmentally friendly strategy. This paper reviews current progress and potential of this technology.
Full-Text [PDF 1013 kb]   (2896 Downloads)    
Article Type: Other | Subject: Agricultural Biotechnology
Received: 2017/08/9 | Accepted: 2018/03/3 | Published: 2019/09/21

1. Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production - present and future. Cem Concr Res. 2011;41(7):642-50. [Link] [DOI:10.1016/j.cemconres.2011.03.019]
2. Kawadkar KG, Krishnamoorthy S. Behaviour of cement concrete under common salt solution both under hydrostatic and atmospheric pressures. Cem Concr Res. 1981;11(1):103-13. [Link] [DOI:10.1016/0008-8846(81)90013-2]
3. Zhang M, Chen J, Lv Y, Wang D, Ye J. Study on the expansion of concrete under attack of sulfate and sulfate-chloride ions. Constr Build Mater. 2013;39:26-32. [Link] [DOI:10.1016/j.conbuildmat.2012.05.003]
4. Idiart AE, López CM, Carol I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cem Concr Comp. 2011;33(3):411-23. [Link] [DOI:10.1016/j.cemconcomp.2010.12.001]
5. Shang HS, Songa Y. Behavior of air-entrained concrete under the compression with constant confined stress after freeze-thaw cycles. Cem Concr Comp. 2008;30(9):854-60. [Link] [DOI:10.1016/j.cemconcomp.2007.10.006]
6. Song HW, Saraswathy V. Corrosion monitoring of reinforced concrete structures-a review. Int J Electrochem Sci. 2007;2:1-28. [Link]
7. Wang Y, Yu G, Deng M, Tang M, Lu D. The use of thermodynamic analysis in assessing alkali contribution by alkaline minerals in concrete. Cem Concr Comp. 2008;30(4):353-9. [Link] [DOI:10.1016/j.cemconcomp.2007.03.003]
8. Talukdar S, Banthia N, Grace JR. Carbonation in concrete infrastructure in the context of global climate change - Part 1: Experimental results and model development. Cem Concr Comp. 2012;34(8):924-30. [Link] [DOI:10.1016/j.cemconcomp.2012.04.011]
9. Sunil Pratap Reddy S. A study on the performance of the bacterial concrete embeded with bacillis subtilis [Dissertation]. Kukatpally, Hydarabad, India: Jawaher lal Nehru Technology University; 2010. [Link]
10. Aggelis DG, Shiotani T. Repair evaluation of concrete cracks using surface and through transmission wave measurements. Cem Concr Comp. 2007;29(9):700-11. [Link] [DOI:10.1016/j.cemconcomp.2007.05.001]
11. Aggilis DG, Hadjiyiangou S, Chaic HK, Momokic S, Shiotanid T. Longitudinal waves for evaluation of large concrete blocks after repair. NDT E Int. 2011;44(1):61-6. [Link] [DOI:10.1016/j.ndteint.2010.09.007]
12. Chen PY, McKittrick J, Meyers MA. Biological materials: functional adaptations and bio inspired designs. Prog Mater Sci. 2012;57(8):1492-704. [Link] [DOI:10.1016/j.pmatsci.2012.03.001]
13. Rong H, Qian CX. Characterization of microbe cementitious materials. Chin Sci Bull. 2012;57(11):1333-8. [Link] [DOI:10.1007/s11434-012-5047-9]
14. Achal V, Pan X, Zhang D, Fu Q. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol. 2012;22(2):244-7. [Link] [DOI:10.4014/jmb.1108.08033]
15. Whiffin VS, Van Paassen LA, Harkes MP. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J. 2007;24(5):417-23. [Link] [DOI:10.1080/01490450701436505]
16. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez- Muñoz MT. Conservation of ornamental stone by Myxococcus xanthusinduced carbonate biomineralization. Appl Environ Microbiol. 2003;69(4):2182-93. [Link] [DOI:10.1128/AEM.69.4.2182-2193.2003]
17. Hammes F, Boon N, Clement G, de Villiers J, Siciliano SD, Verstraete W. Molecular biochemical and ecological characterisation of a bio-catalytic calcification reactor. Appl Microbiol Biotechnol. 2003;62(2-3):191-201. [Link] [DOI:10.1007/s00253-003-1287-6]
18. Achal V, Mukherjee A, Basu PC, Reddy MS. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol. 2009;36(7):981-8. [Link] [DOI:10.1007/s10295-009-0578-z]
19. Ramachandran SK, Ramakrishnan V, Bang SS. Remediation of concrete using microorganisms. ACI Mater J. 2001;98(1):3-9. [Link] [DOI:10.14359/10154]
20. De Muynck W, Cox K, De Belie N, Verstraete W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater. 2008;22(5):875-85. [Link] [DOI:10.1016/j.conbuildmat.2006.12.011]
21. Burne RA, Chen YY. Bacterial ureases in infectitious diseases. Microbes Infect. 2000;2(5):533-42. [Link] [DOI:10.1016/S1286-4579(00)00312-9]
22. Mujah D, Shahin MA, Cheng L. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J. 2017;34(6): 524-37. [Link] [DOI:10.1080/01490451.2016.1225866]
23. Knoll AH. Biomineralization and evolutionary history. Rev Mineral Geochem. 2003;54(1):329-56. [Link] [DOI:10.2113/0540329]
24. Mobley HL, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989;53(1):85-108. [Link]
25. Joshi S, Goyal S, Mukherjee A, Reddy MS. Microbial healing of cracks in concrete: a review. J Ind Microbiol Biotech. 2017;44(11):1511-25. [Link] [DOI:10.1007/s10295-017-1978-0]
26. Cheng L, Cord-Ruwisch R, Shahin MA. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J. 2013;50(1):81-90. [Link] [DOI:10.1139/cgj-2012-0023]
27. Mukherjee A, Dhami NK, Reddy BVV, Reddy MS. Bacterial calcification for enhancing performance of low embodied energy soil-cement bricks. In: Third International Conference on Sustainable Construction Materials and Technologies (SCMT3); 2013 Aug 18-21; Kyoto Research Park, Kyoto, Japan. [Link]
28. Tiano P, Biagiotti L, Mastromei G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods. 1999;36(1-2):139-45. [Link] [DOI:10.1016/S0167-7012(99)00019-6]
29. Tobler DJ, Maclachlan E, Phoenix VR. Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecol Eng. 2012;42:270-8. [Link] [DOI:10.1016/j.ecoleng.2012.02.027]
30. Achal V, Mukherjee A, Reddy MS. Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol. 2011;38(9):1229-34. [Link] [DOI:10.1007/s10295-010-0901-8]
31. Phillips AJ, Lauchnor E, Eldring J, Esposito R, Mitchell AC, Gerlach R, et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environ Sci Technol. 2013;47(1):142-9. [Link] [DOI:10.1021/es301294q]
32. Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, et al. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. 2006;17(4):357-67. [Link] [DOI:10.1007/s10532-005-9006-x]
33. De Muynck W, Verbeken K, De Belie N, Verstraete W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng. 2009;36(2):99-111. [Link] [DOI:10.1016/j.ecoleng.2009.03.025]
34. De Muynck W, Debrouwer D, De Belie N, Verstraete W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res. 2008;38(7):1005-14. [Link] [DOI:10.1016/j.cemconres.2008.03.005]
35. Gauri KL, Bandyopadhyay JK. Carbonate stone: chemical behaviour, durability, and conservation. New York: Wiley; 1999. [Link]
36. Webster A, May E. Bioremediation of weathered-building stone surfaces. Trends Biotechnol. 2006;24(6):255-60. [Link] [DOI:10.1016/j.tibtech.2006.04.005]
37. Wang JY, Van Tittelboom K, De Belie N, Verstratete W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater. 2012;26(1):532-40. [Link] [DOI:10.1016/j.conbuildmat.2011.06.054]
38. Van Tittelboom K, De Muynck W, De Belie N, Verstraete W. Bacteria protect and heal concrete and stone. WTA Schriftenreihe. 2009;33:439-57. [Link]
39. Ramakrishnan V, Deo KS, Duke EF, Bang SS. SEM investigation of microbial calcite precipitation in cement. In: Proc 21st International Conference on Cement Microscopy. Las Vegas, NV; 1999. 406-14. [Link]
40. Ghosh P, Mandal S, Chattopadhyay BD, Pal S. Use of microorganism to improve the strength of cement mortar. Cem Concr Res. 2005;35(10):1980-3. [Link] [DOI:10.1016/j.cemconres.2005.03.005]
41. Jonkers HM, Schlangen E. Crack repair by concrete immobilized bacteria. In: Schmetz AJM, van der Zwaag S, editors. Proceedings of the First International Conference on Self Healing Materials; 2007 Apr 18-20; Delft University of Technology. Noordwijk Aan Zee, Netherlands. Berline: Springer; 2007. p. 1-7. [Link]
42. Jonkers HM, Schlangen E. Development of a bacteria-based self-healing concrete. In: Walraven JC, Stoelhorst D, editors. Tailor made concrete structures. London: CRC Press; 2008. p. 425-30. [Link] [DOI:10.1201/9781439828410.ch72]
43. Neville AM. Properties of concrete. 4th Edition. New York: John Wiley & Sons; 1996. [Link]
44. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. 2010;36(2):230-5. [Link] [DOI:10.1016/j.ecoleng.2008.12.036]
45. Xu J, Yao W, Jiang Z. Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J Mater Civil Eng. 2014;26(5):983-91. [Link] [DOI:10.1061/(ASCE)MT.1943-5533.0000906]
46. Achal V, Pan X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl Biochem Biotechnol. 2014;174(1):307-17. [Link] [DOI:10.1007/s12010-014-0842-1]
47. Seifritz W. CO2 disposal by means of silicates. Nature. 1990;345-486. [Link] [DOI:10.1038/345486b0]
48. Perito B, Marvasi M, Barabesi C, Mastromei G, Bracci S, Vendrell M, Tiano P. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: biotechnological perspectives for monumental stone reinforcement. J Cult Heritage. 2014;15(4):345-51. [Link] [DOI:10.1016/j.culher.2013.10.001]
49. Van Paassen LA. Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Han J, Alzamora DA, editors. Proceeding of Geo-Frontiers; Advances in Geotechnical Engineering; 2011 May 13- Nov 16; Dallas, USA-Reston. Reston: American Society of Civil Engineers (ASCE); 2011. p. 4099-108. [Link] [DOI:10.1061/41165(397)419]
50. Blauw AN, Los FJ, Huisman J, Peperzak L. Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic. J Mar Syst. 2010;83(3-4):115-26. [Link] [DOI:10.1016/j.jmarsys.2010.05.003]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.