Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 247-253 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ayazi M, Golshan Ebrahimi N. Study of Viscosity Behavior and Surface Properties of the Active System by Escherichia coli/Water/Polyvinylpyrrolidone. JMBS 2019; 10 (2) :247-253
URL: http://biot.modares.ac.ir/article-22-16685-en.html
1- Polymer Engineering Department, Chemistry Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Polymer Engineering Department, Chemistry Engineering Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , ebrahimn@modares.ac.ir
Abstract:   (6005 Views)
Aims: The study of the behavior of active suspended fluid introduced a new topic for a wide range of applications such as reactors, microfluidic pumps, cultivating surfaces and antibacterial surfaces. The motility of bacterial suspension has generated a shear force (Hydrodynamic interaction) across the cells, which has an effect on the fluid viscosity. In this study, shear rheometer was used to evaluate the viscosity behavior of Escherichia coli (E. coli) in a water/polymer environment as a function of bacteria concentration and shear rate.
Materials and Methods: In the experimental study, the activity of E. coli was evaluated by choosing the constant concentration (0.01g/ml) and molecular weight of polyvinylpyrrolidone (360KDa). Also, the surface tensions of E. coli, Acetobacter xylinum, and S. aureus solutions were calculated using Wilhelmy test.
Findings: Activity of E. coli suspension results the lower viscosity comparing with the bacteria-free solution. The relative viscosities of the solutions were analyzed in a wide range of shear rates and bacterial concentrations. At a low shear rate up to1S-1, the relative viscosity was found to be less than a unit value (Less than water). Also, due to the collective motility break up to smaller parts at high shear rates, the viscosity increased. The critical volume fraction was defined in determined bacterial concentration (0.8v/v) to analyze the collective movement of bacteria. The interfacial tension was reduced by bacteria presence of three different stain types that confirmed the effect of bacteria activity on the flow behavior.
Conclusion: The activity of E. coli bacteria makes it easy for fluid to flow at low shear rates. The viscosity reduction of active particle has a potential to demonstrate a variety of novel applications when a reduced energy level is needed.
Full-Text [PDF 908 kb]   (3385 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2018/01/28 | Accepted: 2018/03/10 | Published: 2019/06/20

References
1. Gachelin J, Miño G, Berthet H, Lindner A, Rousselet A, Clément E. Non-Newtonian viscosity of Escherichia coli suspensions. Phys Rev Lett. 2013;110(26):268103. [Link] [DOI:10.1103/PhysRevLett.110.268103]
2. Hatwalne Y, Ramaswamy S, Rao M, Simha RA. Rheology of active-particle suspensions. Phys Rev Lett. 2004;92(11):118101. [Link] [DOI:10.1103/PhysRevLett.92.118101]
3. Fürthauer S, Neef M, Grill SW, Kruse K, Jülicher F. The Taylor-Couette motor: Spontaneous flows of active polar fluids between two coaxial cylinders. New J Phys. 2012;14:023001. [Link] [DOI:10.1088/1367-2630/14/2/023001]
4. Credi A. Nanomachines, fundamentals and applications, by Joseph Wang. Angewandte Chemie International Edition. 2014;53(17):4274-5. [Link] [DOI:10.1002/anie.201311274]
5. Wirtz D. Particle-tracking microrheology of living cells: Principles and applications. Annu Rev Biophys. 2009;38:301-26. [Link] [DOI:10.1146/annurev.biophys.050708.133724]
6. Virgile C, Hauk P, Wu HC, Shang W, Tsao CY, Payne GF, et al. Engineering bacterial motility towards hydrogen-peroxide. PLoS One. 2018;13(5):e0196999. [Link] [DOI:10.1371/journal.pone.0196999]
7. Ravichandar JD, Bower AG, Agung Julius A, Collins CH. Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient. Sci Rep. 2017;7:8959. [Link] [DOI:10.1038/s41598-017-08870-6]
8. Patteson AE, Gopinath A, Arratia PE. Active colloids in complex fluids. Curr Opin Colloid Interface Sci. 2016;21:86-96. [Link] [DOI:10.1016/j.cocis.2016.01.001]
9. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, et al. Hydrodynamics of soft active matter. Rev Mod Phys. 2013;85(3):1143. [Link] [DOI:10.1103/RevModPhys.85.1143]
10. Grégoire G, Chaté H. Onset of collective and cohesive motion. Phys Rev Lett. 2004;92(2):025702. [Link] [DOI:10.1103/PhysRevLett.92.025702]
11. Saintillan D. The dilute rheology of swimming suspensions: A simple kinetic model. Exp Mech. 2010;50(9):1275-81. [Link] [DOI:10.1007/s11340-009-9267-0]
12. Gachelin J, Rousselet A, Lindner A, Clement E. Collective motion in an active suspension of Escherichia coli bacteria. New J Phys. 2014;16:025003. [Link] [DOI:10.1088/1367-2630/16/2/025003]
13. Karmakar R, Gulvady R, Tirumkudulu MS, Venkatesh KV. Motor characteristics determine the rheological behavior of a suspension of microswimmers. Phys Fluids. 2014;26(7):071905. [Link] [DOI:10.1063/1.4890005]
14. Subramanian G, Koch DL. Critical bacterial concentration for the onset of collective swimming. J Fluid Mech. 2009;632:359-400. [Link] [DOI:10.1017/S002211200900706X]
15. Berke AP, Turner L, Berg HC, Lauga E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett. 2008;101(3):038102. [Link] [DOI:10.1103/PhysRevLett.101.038102]
16. Lauga E. Bacterial hydrodynamics. Annu Rev Fluid Mech. 2016;48:1-17. [Link] [DOI:10.1146/annurev-fluid-122414-034606]
17. Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO. Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett. 2004;93(9):098103. [Link] [DOI:10.1103/PhysRevLett.93.098103]
18. Patteson AE, Gopinath A, Goulian M, Arratia PE. Running and tumbling with E. coli in polymeric solutions. Sci Rep. 2015;5:15761. [Link] [DOI:10.1038/srep15761]
19. Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WC. Flagellated bacterial motility in polymer solutions. Proc Natl Acad Sci U S A. 2014;111(50):17771-6. [Link] [DOI:10.1073/pnas.1415460111]
20. Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117(2):696-701. [Link]
21. Magariyama Y, Kudo S. A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Biophys J. 2002;83(2):733-9. [Link] [DOI:10.1016/S0006-3495(02)75204-1]
22. López HM, Gachelin J, Douarche C, Auradou H, Clément E. Turning bacteria suspensions into superfluids. Phys Rev Lett. 2015;115(2):028301. [Link] [DOI:10.1103/PhysRevLett.115.028301]
23. Sokolov A, Aranson IS. Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett. 2009;103(14):148101. [Link] [DOI:10.1103/PhysRevLett.103.148101]
24. Pollitt EJ, Crusz SA, Diggle SP. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci Rep. 2015;5:17698. [Link] [DOI:10.1038/srep17698]
25. Cui Z, Zeng XM. Rheology of sheared bacterial suspensions. In: Childress S, Hosoi A, Schultz W, Wang J, editors. Natural locomotion in fluids and on surfaces, the IMA volumes in mathematics and its applications. 155th Volume. New York: Springer; 2012. pp. 217-24. [Link] [DOI:10.1007/978-1-4614-3997-4_17]
26. Pollitt EJG, Diggle SP. Defining motility in the Staphylococci. Cell Mol Life Sci. 2017;74(16):2943-58. [Link] [DOI:10.1007/s00018-017-2507-z]
27. D'Agostino M. Focus: Swimming microbes change fluid viscosity. Phys Fluids. 2010;25:9. [Link] [DOI:10.1103/PhysRevFocus.25.9]
28. Rabani A, Ariel G, Be'er A. Collective motion of spherical bacteria. PLoS One. 2013;8(12):e83760. [Link] [DOI:10.1371/journal.pone.0083760]
29. Teodorescu M, Bercea M. Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng. 2015;54(9):923-43. [Link] [DOI:10.1080/03602559.2014.979506]
30. Morse M, Huang A, Li G, Maxey MR, Tang JX. Molecular adsorption steers bacterial swimming at the air/water interface. Biophys J. 2013;105(1):21-8. [Link] [DOI:10.1016/j.bpj.2013.05.026]
31. KRÜSS. Wilhelmy plate method [Internet]. Hamburg: KRÜSS; 2018 [cited 2019 Jan 23]. Available from: https://www.kruss-scientific.com/services/education-theory/glossary/wilhelmy-plate-method/ [Link]
32. Denniss S, Rush J. Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media. FASEB J. 2015;29:1029. [Link]
33. Gao Y, Neubauer M, Yang A, Johnson N, Morse M, Li G, et al. Altered motility of Caulobacter crescentus in viscous and viscoelastic media. BMC Microbiol. 2014;14:322. [Link] [DOI:10.1186/s12866-014-0322-3]
34. Sherris JC, Preston NW, Shoesmith JG. The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. J Gen Microbiol. 1957;16(1):86-96. [Link] [DOI:10.1099/00221287-16-1-86]
35. Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE. Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci U S A. 2005;102(7):2277-82. [Link] [DOI:10.1073/pnas.0406724102]
36. Douarche C, Buguin A, Salman H, Libchaber A. E. Coli and oxygen: A motility transition. Phys Rev Lett. 2009;102(19):198101. [Link] [DOI:10.1103/PhysRevLett.102.198101]
37. Balaev AE, Dvoretski KN, Doubrovski VA. Refractive index of Escherichia coli cells. Saratov Fall Meeting 2001: Optical Technologies in Biophysics and Medicine III, Saratov, Russian Federation. Bellingham WA: SPIE 4707; 2002. [Link]
38. Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS. Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise. Phys Rev E. 2011;83(5):050904(R). [Link] [DOI:10.1103/PhysRevE.83.050904]
39. Ishikawa T. Suspension biomechanics of swimming microbes. J R Soc Interface. 2009;6:815-34. [Link] [DOI:10.1098/rsif.2009.0223]
40. Ramia M, Tullock DL, Phan-Thien N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J. 1993;65(2):755-78. [Link] [DOI:10.1016/S0006-3495(93)81129-9]
41. Brown E, Jaeger HM. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep Prog Phys. 2014;77(4):046602. [Link] [DOI:10.1088/0034-4885/77/4/046602]
42. Ryan SD, Sokolov A, Berlyand L, Aranson IS. Correlation properties of collective motion in bacterial suspensions. New J Phys. 2013;15:105021. [Link] [DOI:10.1088/1367-2630/15/10/105021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.