Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 415-423 | Back to browse issues page

XML Persian Abstract Print

1- Pharmaceutical Chemistry Department, Pharmacy Faculty, Zanjan University of Medical Sciences, Zanjan, Iran, Pharmacy Faculty, Next to Ayatollah Mousavi Hospital, Gavazang Road, Zanjan, Iran. , danafar@zums.ac.ir
2- Pharmaceutical Chemistry Department, Pharmacy Faculty, Zanjan University of Medical Sciences, Zanjan, Iran
3- Genetics Department, Bioscience Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (4308 Views)
Nanotechnology is currently one of the promising approaches for cancer diagnosis and treatment. Among different materials that so far have been used for drug delivery, the systems based on the polymers are more attractive, due to their simple manufacturing processes and diversity in polymer functionalization and modification methods. Polyethyleneglycol (PEG) and polycaprolactone (PCL) are two FDA approved and biocompatible synthetic polymers which frequently have been used in the pharmaceutical industry. Apart from the delivery carriers, the active ingredient’s safety is also very challenging in case of cancer therapeutics. The chemotherapy agent’s side effects are one of the main patients’ death in many cancers. The naturally extracted curcumin is one of the most interesting anti-cancer agents with a proven selective effect on the cancerous cells which results in minimum side effects during the treatment. Curcumin has been tested as the main agent or in combination therapy of various cancers. Numerous studies have shown the safety and efficacy of curcumin at different administered doses. However, the main obstacle in the application of curcumin is its low aqueous solubility and low and variable bioavailability after administration. For that, in this study, we tried to enhance the solubility of curcumin using a novel diblock copolymer of PEG-PCL nanoparticulate system. At first, the PEG-PCL copolymer was synthesized and then characterized by GPC, FTIR, and H NMR methods. After that, curcumin was loaded in the micellar structure of PEG-PCL at an optimized encapsulation approach and then the toxicity of the prepared nanoparticles was assessed in MCF-7 cell culture. The results showed that the prepared nanoparticles could efficiently entrap the hydrophobic molecules of curcumin, improve its solubility and increase in vitro activity against cancer cell line.
Full-Text [PDF 1236 kb]   (3138 Downloads)    
Article Type: Original Research | Subject: Pharmaceutical Biotechnology
Received: 2018/07/10 | Accepted: 2018/11/5 | Published: 2019/09/21

1. 1- Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014;4(21):10815-29. [Link] [DOI:10.1039/c3ra46396f]
2. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631-52. [Link] [DOI:10.1007/s00018-008-7452-4]
3. Burish TG, Jenkins RA. Effectiveness of biofeedback and relaxation training in reducing the side effects of cancer chemotherapy. Health Psychol. 1992;11(1):17-23. [Link] [DOI:10.1037/0278-6133.11.1.17]
4. Dutta AK, Ikiki E. Novel drug delivery systems to improve bioavailability of curcumin. J Bioequiv Bioavailab. 2013;6(1):001-9. [Link]
5. Ma M, Sun T, Xing P, Li Z, Li S, Su J, et al. A supramolecular curcumin vesicle and its application in controlling curcumin release. Colloids Surf A Physicochem Eng Aspects. 2014;459;157-65. [Link] [DOI:10.1016/j.colsurfa.2014.06.043]
6. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7);2545-61. [Link] [DOI:10.1039/c2cs15327k]
7. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42(3):1147-235. [Link] [DOI:10.1039/C2CS35265F]
8. Zhu X, Fryd M, Tran BD, Ilies MA, Wayland BB. Modifying the hydrophilic−hydrophobic interface of PEG-b-PCL to increase micelle stability: Preparation of PEG-b-PBO-b-PCL triblock copolymers, micelle formation, and hydrolysis kinetics. Macromolecules. 2012;45(2);660-5. [Link] [DOI:10.1021/ma202530v]
9. Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1-2):158-65. [Link] [DOI:10.1016/j.ijpharm.2006.08.018]
10. Song Z, Zhu W, Liu N, Yang F, Feng R. Linolenic acid-modified PEG-PCL micelles for curcumin delivery. Int J Pharm. 2014;471(1-2):312-21. [Link] [DOI:10.1016/j.ijpharm.2014.05.059]
11. Peng W, Jiang XY, Zhu Y, Omari-Siaw E, Deng WW, Yu JN, et al. Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharmacol Sin. 2015;36(1):139-48. [Link] [DOI:10.1038/aps.2014.113]
12. Izunobi JU, Higginbotham CL. Polymer molecular weight analysis by 1H NMR spectroscopy. J Chem Educ. 2011;88(8):1098-104. [Link] [DOI:10.1021/ed100461v]
13. Yang CS, Wu HC, Sun JS, Hsiao HM, Wang TW. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl Mater Interfaces. 2013;5(21):10985-94. [Link] [DOI:10.1021/am4032295]
14. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1-2):71-80. [Link] [DOI:10.1016/j.drudis.2011.09.009]
15. Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors. 2013;39(1):2-13. [Link] [DOI:10.1002/biof.1079]
16. Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. (2017) Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci. 2017;131(15):1781-99. [Link] [DOI:10.1042/CS20160935]
17. Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors. 2013;39(1):56-68. [Link] [DOI:10.1002/biof.1068]
18. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259-69. [Link] [DOI:10.1016/j.ejpb.2006.11.009]
19. Rhim T, Lee KY. Exosome and polymersome for potential theranostic applications. Macromol Res. 2016;24(7);577-86. [Link] [DOI:10.1007/s13233-016-4045-1]
20. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343-55. [Link] [DOI:10.1002/jps.10397]
21. Alibolandi M, Ramezani M, Abnous K, Sadeghi F, Hadizadeh F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J Nanopart Res. 2015;17(2);1-16. [Link] [DOI:10.1007/s11051-015-2878-8]
22. Peng S, Hung WL, Peng YS, Chu IM. Oligoalanine-modified Pluronic-F127 nanocarriers for the delivery of curcumin with enhanced entrapment efficiency. J Biomater Sci Polym Ed. 2014;25(12):1225-39. [Link] [DOI:10.1080/09205063.2014.924059]
23. Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine. 2010;5(3):433-49. [Link] [DOI:10.2217/nnm.10.9]
24. De Villiers MM, Aramwit P, Kwon GS, editoes. Nanotechnology in drug delivery. Berlin: Springer; 2008. [Link] [DOI:10.1007/978-0-387-77667-5]
25. Wu Q, Wang N, He T, Shang J, Li L, Song L, et al. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model. Sci Rep. 2015;5:13553. [Link] [DOI:10.1038/srep13553]
26. Rusen L, Neacsu P, Cimpean A, Valentin I, Brajnicov S, Dumitrescu LN, et al. In vitro evaluation of poly (ethylene glycol)-block-poly (ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation. Appl Surf Sci. 2016;374;23-30. [Link] [DOI:10.1016/j.apsusc.2015.08.214]
27. Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Des Monom Polym. 2012;15(5);465-521. [Link] [DOI:10.1080/1385772X.2012.688328]
28. Vinod BS, Antony J, Nair HH, Puliyappadamba VT, Saikia M, Narayanan SS, et al. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 2013;4:e505. [Link] [DOI:10.1038/cddis.2013.26]
29. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955-68. [Link] [DOI:10.1016/j.ejca.2005.05.009]
30. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6);807-18. [Link] [DOI:10.1021/mp700113r]
31. Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm. 2013;10(5);1977-87. [Link] [DOI:10.1021/mp4000019]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.