Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 447-454 | Back to browse issues page

XML Persian Abstract Print


1- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
3- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , ranjbarb@modares.ac.ir
Abstract:   (7640 Views)
Aims: Due to their unique properties, functionalized GNPs provide a high potential for solving many problems, such as diagnosis and treatment of genetic diseases using nanotechnology. Depending on the purpose of each experiment, a particular interaction of DNA and nanoparticle is desirable that can be achieved by changing various parameters. The purpose of this study was to investigate the effect of gold nanoparticles surface charge on the conjugation process and the type of DNA interactions, as well as increasing the loading of DNA on the surface of gold nanoparticles.
Materials and Methods: Two types of 30nm gold nanoparticles with positive and negative charge were synthesized. Gold nanoparticles were functionalized with three different concentrations of DNA. Bioconjugation was investigated using UV-Vis and fluorescence spectroscopy. Quantification of the DNA loading on each nanoparticle surface was done using two methods by fluorescence assay.
Findings: The SPR spectrum of nanoparticles confirmed the binding of DNA to the surface of nanoparticles and also illustrates the level of DNA loading to the surface of the nanoparticle, as well as the effect of the surface charge of nanoparticles on the bioconjugation process. The fluorescence assay showed a higher loading of DNA in CTAB-stabilized nanoparticles and more non-specific than citrate-stabilized nanoparticles.
Conclusion: Depending on the surface charge of GNPs, DNA loading on the surface of GNPs occurs with different affinities. Based on the purpose of the study, citrate stabilized GNPs and high concentration of DNA was appropriate to achieve this goal.
Full-Text [PDF 916 kb]   (3845 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2018/07/30 | Accepted: 2018/09/30 | Published: 2019/09/21

References
1. 1- Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces. 2007;58(1):3-7. [DOI:10.1016/j.colsurfb.2006.08.005]
2. Das M, Shim KH, An SSA, Yi DK. Review on gold nanoparticles and their applications. Toxicol Environ Health Sci. 2011;3(4):193-205. [Link] [DOI:10.1007/s13530-011-0109-y]
3. Amendola V, Meneghetti M, Stener M, Guo Y, Chen S, Crespo P, et al. Physico-chemical characteristics of gold nanoparticles. Gold Nanopart Anal Chem. 2014;66:81-152. [Link] [DOI:10.1016/B978-0-444-63285-2.00003-1]
4. Yeh Y, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871-80. [Link] [DOI:10.1039/C1NR11188D]
5. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103-69. [Link] [DOI:10.1021/cr0300789]
6. Hurst SJ, Lytton-Jean AK, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem. 2006;78(24):8313-8. [Link] [DOI:10.1021/ac0613582]
7. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science. 2006;312(5776):1027-30. [Link] [DOI:10.1126/science.1125559]
8. Li F, Zhang H, Dever B, Li XF, Le XC. Thermal stability of DNA functionalized gold nanoparticles. Bioconjug Chem. 2013;24(11):1790-7. [Link] [DOI:10.1021/bc300687z]
9. Hornos Carneiro MF, Barbosa F. Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects. J Toxicol Environ Heal Part B Crit Rev. 2016;19(3-4):129-48. [Link] [DOI:10.1080/10937404.2016.1168762]
10. Wong AC, Wright DW. Size-dependent cellular uptake of DNA functionalized gold nanoparticles. Small. 2016;12(40):5592-600. [Link] [DOI:10.1002/smll.201601697]
11. Carnerero JM, Jimenez-Ruiz A, Castillo PM, Prado-Gotor R. Covalent and non-covalent DNA-gold-nanoparticle interactions: new avenues of research. Chemphyschem. 2017;18(1):17-33. [Link] [DOI:10.1002/cphc.201601077]
12. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078-81. [Link] [DOI:10.1126/science.277.5329.1078]
13. Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc. 2003;125(38):11474-5. [Link] [DOI:10.1021/ja0358854]
14. Xu H, Wu H, Huang F, Song S, Li W, Cao Y, et al. Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res. 2005;33(9):e83. [Link] [DOI:10.1093/nar/gni084]
15. Stokes RJ, Macaskill A, Lundahl PJ, Smith WE, Faulds K, Graham D. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Small. 2007;3(9):1593-601. [Link] [DOI:10.1002/smll.200600662]
16. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002;297(5586):1536-40. [Link] [DOI:10.1126/science.297.5586.1536]
17. Rezaei Z, Ranjbar B. Ultra‐sensitive, rapid gold nanoparticle‐quantum dot plexcitonic self‐assembled aptamer‐based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci. 2016;17(2):1-29. [Link] [DOI:10.1002/elsc.201500188]
18. Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au Colloid monolayers. Anal Chem. 1995;67(4):735-43. [Link] [DOI:10.1021/ac00100a008]
19. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc. 2006;1(1):246-52. [Link] [DOI:10.1038/nprot.2006.38]
20. Pedersen DB, Duncan EJS. Surface plasmon resonance spectroscopy of gold nanoparticle- coated substrates. Tech Rep. 2005;109:1-46. [Link]
21. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003;3(8):1087-90. [Link] [DOI:10.1021/nl034197f]
22. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B. 2004;108(37):13963-71. [Link] [DOI:10.1021/jp047021q]
23. Pamies R, Cifre JGH, Espín VF, Collado-González M, Baños FGD, de la Torre JG. Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res. 2014;16(4):2375-6. [Link] [DOI:10.1007/s11051-014-2376-4]
24. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano. 2009;3(2):418-24. [Link] [DOI:10.1021/nn800726e]
25. Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett. 2003;3(1):33-6. [Link] [DOI:10.1021/nl025888z]
26. Maxwell DJ, Taylor JR, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc. 2002;124(32):9606-12. [Link] [DOI:10.1021/ja025814p]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.