Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 407-413 | Back to browse issues page

XML Persian Abstract Print


1- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biotechnology Department, Science Faculty, University of Tehran, Tehran, Iran
3- Microbiology Department, Biology Faculty, University of Tehran, Tehran, Iran
4- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , khajeh@modares.ac.ir
Abstract:   (4318 Views)
Quantum dots have received great attention for the past years as fluorescent markers for physical, chemical, and biological applications due to their unique size-dependent electrical and optical properties such as high extinction coefficient, broad absorption with narrow symmetric size-tunable fluorescent spectra, and strong resistance to photobleaching with significant luminescence quantum yield. In this study, at first the CdSe/ZnS quantum dots coated with oleylamine surface ligand were synthesized by high temperature injection method under vacuum conditions and stable nitrogen at 320°C. Then, in order to investigate the quenching effect of azo dyes, which is one of the most carcinogenic chemical colors used in various industries, on the emission of these nanoparticles, we used mercaptopropionic acid as a suitable hydrophilic ligand at the surface modification of quantum dots in the ligand exchange process as a proper aqueous phase transfer strategy. After confirming the proper synthesis of CdSe/ZnS nanoparticles by the transmission electron microscopy (TEM) test and the synthesized nanoparticle core and shell standard powder diffraction files (pdfs) in X-ray diffraction (XRD), the results of the studies showed that the methyl red due to its absorption spectrum overlapping with the emission spectrum of these quantum dots has a very powerful quenching effect on the emission of synthesized nanoparticles.
Full-Text [PDF 1072 kb]   (3467 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2018/08/14 | Accepted: 2018/09/30 | Published: 2019/09/21

References
1. Algar WR, Tavares AJ, Krull UJ. Beyond labels: (2010) A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673(1):1-25. [Link] [DOI:10.1016/j.aca.2010.05.026]
2. Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL. Applications of quantum dots in food science and biology. Trends Food Sci Technol. 2016;53:75-89. [Link] [DOI:10.1016/j.tifs.2016.04.006]
3. Algar WR, Krull UJ. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem. 2008;391(5):1609-18. [Link] [DOI:10.1007/s00216-007-1703-3]
4. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435-46. [Link] [DOI:10.1038/nmat1390]
5. Martín-Palma RJ, Manso M, Torres-Costa V. Optical biosensors based on semiconductor nanostructures. Sensors. 2009;9(7):5149-72. [Link] [DOI:10.3390/s90705149]
6. Zhao C, Bai Z, Liu X, Zhang Y, Zou B, Zhong H. Small GSH-Capped CuInS2 quantum Dots: MPA-assisted aqueous phase transfer and bioimaging applications. ACS Appl Mater Interfaces. 2015;7(32):17623-9. [Link] [DOI:10.1021/acsami.5b05503]
7. Galian RE, De la Guardia M. The use of quantum dots in organic chemistry. Trends Anal Chem. 2009;28(3):279-91. [Link] [DOI:10.1016/j.trac.2008.12.001]
8. Gromova YA, Orlova AO, Maslov VG, Fedorov AV, Baranov AV. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes. Nanoscale Res Lett. 2013;8(452):1-6. [Link] [DOI:10.1186/1556-276X-8-452]
9. Hussain SA. An introduction to fluorescence resonance energy transfer (FRET). arXiv Prepr. 2009;1815:1-4. [Link]
10. Lin H, Xie P, Liu Y, Zhou X, Li B. Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators. Nanotechnology. 2015;26(33):335401. [Link] [DOI:10.1088/0957-4484/26/33/335401]
11. Gao X, Zhuo N, Liao C, Xiao L, Wang H, Cui Y, et al. Industrial fabrication of Mn-doped CdS/ZnS core/shell nanocrystals for white-light-emitting diodes. Opt Mater Expr. 2015;5(10):2164-73. [Link] [DOI:10.1364/OME.5.002164]
12. Chang S, Zhang X, Wang Z, Han D, Tang J, Bai Z, et al. Alcohol-soluble quantum dots: enhanced solution processability and charge injection for electroluminescence devices. IEEE. 2017;23(5):1-8. [Link] [DOI:10.1109/JSTQE.2017.2688706]
13. Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, et al. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chem Mat. 2016;28(4):1085-91. [Link] [DOI:10.1021/acs.chemmater.5b04480]
14. Chen BY. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem. 2002;38(3):437-46. [Link] [DOI:10.1016/S0032-9592(02)00151-6]
15. Novotný C, Dias N, Kapanen A, Malachová K, Vándrovcová M, Itävaara M, et al. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere. 2006;63(9):1436-42. [Link] [DOI:10.1016/j.chemosphere.2005.10.002]
16. Chung KT. Azo dyes and human health: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(4):233-261. [Link] [DOI:10.1080/10590501.2016.1236602]
17. Punzi M, Anbalagan A, Aragão Börner R, Svensson BM, Jonstrup M, Mattiasson B. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chem Eng J. 2015;270:290-9. [Link] [DOI:10.1016/j.cej.2015.02.042]
18. Saranraj P. Bacterial biodegradation and decolourization of toxic textile azo dyes. Afr J Microbiol Res. 2013;7(30):3885-90. [Link]
19. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-32. [Link] [DOI:10.1016/j.biomaterials.2007.07.014]
20. Azzazy HM, Mansour MM, Kazmierczak SC. From diagnostics to therapy : prospects of quantum dots. Clin Biochem. 2007;40(13-14):917-27. [Link] [DOI:10.1016/j.clinbiochem.2007.05.018]
21. Chen G, Song F, Xiong X, Peng X. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res. 2013;52(33):11228-45. [Link] [DOI:10.1021/ie303485n]
22. Pong BK, Trout BL, Lee JY. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water : a procedure guided by computational studies. Langmuir. 2008;24(10):5270-6. [Link] [DOI:10.1021/la703431j]
23. Rojas-Cervellera V, Raich L, Akola J, Rovira C. The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale. 2017;9(9):3121-27. [Link] [DOI:10.1039/C6NR08498B]
24. Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel). 2011;11(12):11036-55. [Link] [DOI:10.3390/s111211036]
25. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763-75. [Link] [DOI:10.1038/nmeth.1248]
26. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc. 2003;125(41):12567-75. [Link] [DOI:10.1021/ja0363563]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.