Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 171-177 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salmani N, Sayadi M, Rezaei M. Optimization of Adsorption Process of Cr (VI) from Aqueous Solution Using Biosynthesized Palladium Nanoparticles by Spirulina Platensis. JMBS 2018; 9 (2) :171-177
URL: http://biot.modares.ac.ir/article-22-24327-en.html
1- Environmental Sciences Department, Natural Resources & Environment ‎Faculty, University of Birjand, Birjand, Iran
2- Environmental Sciences Department, Natural Resources & Environment ‎Faculty, University of Birjand, Birjand, Iran, Natural Resources & Environment Faculty, University of Birjand, Pardis Amirabad, Birjand, South Khorasan. Postal Code: 9719113944 ‎ , mh_sayadi@birjand.ac.ir
3- Environmental Sciences Department, Natural Resources & Environment Faculty, University of Birjand, Birjand, Iran
Abstract:   (8988 Views)
Aims: Chromium has destructive effects on the environment and various chemical methods have been investigated for removal of Cr (VI), but high cost and environmental problems have led to using biological methods to remove chromium. The aim of this study was to optimize adsorption process of Cr from aqueous solution, using biosynthesized palladium nanoparticles by Spirulina Platensis.
Materials and Methods: In this experimental study, palladium nanoparticles were synthesized, using Spirulina Platensis and examined by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) methods. During the process of adsorption of chromium, pH, contact time, initial Cr concentration, and adsorbent dosage to optimization were optimized. Adsorption isotherms for Chromium were also determined on palladium nanoparticles based on Langmuir and Freundlich isotherm models.
Findings: The extract of Spirulina Platensis had the ability to synthesize palladium nanoparticles. The maximum removal was obtained at pH=2, initial chromium concentration=0.1mg/l, contact time=20 minutes, and adsorbent dosage=0.5g/l, and the removal percentage varied from 68.9% to 98.1%. RL for palladium nanoparticles was in the range of 0.17 to 0.95, showing that Langmuir model was suitable for adsorbent.
Conclusion: Biosynthesized palladium nanoparticles by Spirulina Platensis high efficiency in removing chromium in aqueous solutions.
Full-Text [PDF 905 kb]   (3440 Downloads)    
Subject: Agricultural Biotechnology
Received: 2016/05/1 | Accepted: 2017/05/31 | Published: 2018/06/21

1. Gupta S, Babu BV. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem Eng J. 2009;150(2-3):352-65. [Link] [DOI:10.1016/j.cej.2009.01.013]
2. Rashki Ghaleno O, Sayadi MH, Rezaei MR. Potential ecological risk assessment of heavy metals in sediments of water reservoir case study: Chah Nimeh of Sistan. Proc Int Acad Ecol Environ Sci. 2015;5(4):89-96. [Link]
3. Sayadi MH, Torabi S. Geochemistry of soil and human health: A review. Pollut Res. 2009;28(2):257-62. [Link]
4. Shekari H, Sayadi MH, Rezaei MR, Allahresani A. Synthesis of nickel ferrite/titanium oxide magnetic nanocomposite and its use to remove hexavalent chromium from aqueous solutions. Surf Interface. 2017;8:199-205. [Link] [DOI:10.1016/j.surfin.2017.06.006]
5. Sayadi MH, Siami M, Esmailpour M, Hajiani M. The efficiency of biosynthesis silica nanoparticles at removal of heavy metals Cr and Cu from aqueous solutions. J Birjand Univ Med Sci. 2017;24(1):36-49. [Persian] [Link]
6. Agarwal GS, Kumar Bhuptawat H, Chaudhari S. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour Technol. 2006;97(7):949-56. [Link] [DOI:10.1016/j.biortech.2005.04.030]
7. Kumar Naiya T, Kumar Das S. Removal of Cr(VI) from aqueous solution using fly ash of different sources. Desalination Water Treat. 2016;57(13):5800-9. [Link] [DOI:10.1080/19443994.2014.1003611]
8. Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut. 2010;158(2):514-9. [Link] [DOI:10.1016/j.envpol.2009.08.024]
9. Li XQ, Cao J, Zhang WX. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res. 2008;47(7):2131-9. [Link] [DOI:10.1021/ie061655x]
10. Geng B, Jin Z, Li T, Qi X. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci Total Environ. 2009;407(18):4994-5000. [Link] [DOI:10.1016/j.scitotenv.2009.05.051]
11. Barikbin B, Mortazavi SB, Moussavi G. Removal of hexavalent chromium from brackish groundwater by nanofiltration: a case study in Iran. Journal of Water Supply: Research and Technology-Aqua. 2011;60(2):121-126. [Link] [DOI:10.2166/aqua.2011.020]
12. Bankar A, Joshi B, Ravi Kumar A, Zinjarde S. Banana peel extract mediated novel route for synthesis of silver nanoparticles. Coll Surf A Physicochem Eng Asp; 2010;368(1-3):58-63. [Link] [DOI:10.1016/j.colsurfa.2010.07.024]
13. Nasrollahzadeh M, Mohammad Sajadi S. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles. J Coll Interface Sci. 2016;462:243-51. [Link] [DOI:10.1016/j.jcis.2015.09.065]
14. Sheny DS, Philip D, Mathew J. Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc. 2012;91:35-8. [Link] [DOI:10.1016/j.saa.2012.01.063]
15. Sajadi F, Sayadi MH, Hajiani M. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris. J Birjand Univ Med Sci. 2016;23(2):119-29. [Link]
16. Hu J, Chen G, Lo IMC. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005;39(18):4528-36. [Link] [DOI:10.1016/j.watres.2005.05.051]
17. Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater. 2009;166(2-3):821-9. [Link] [DOI:10.1016/j.jhazmat.2008.11.083]
18. Jung Y, Choi J, Lee W. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium. Chemosphere. 2007;68(10):1968-75. [Link] [DOI:10.1016/j.chemosphere.2007.02.028]
19. Guo Y, Qi J, Yang Sh, Yu K, Wang Z, Xu H. Adsorption of cr (VI) on micro and mesoporous rice husk-based active carbon. Mater chem phys. 2003;78(1):132-137. [Link] [DOI:10.1016/S0254-0584(02)00302-4]
20. Selvarani M, Prema P. Removal of toxic metal hexavalent chromium [Cr(VI)] from aqueous solution using starch-stabilized nanoscale zerovalent iron as adsorbent: Equilibrium and kinetics. Int J Environ Sci. 2012;2(4):1962-75. [Link]
21. Rahmani AR, Samadi MT, Noroozi R. Hexavalent chromium removal from aqueous solutions by adsorption onto synthetic nano size zerovalent iron (nZVI). Int J Environ Chem Ecol Geol Geophys Eng. 2011;5(2):62-5. [Link]
22. Shirzad Siboni M, Samadi MT, Azizian S, Maleki A, Zarrabi M. Removal of chromium by using of adsorption onto strong base anion resin: Study of equilibrium and kinetic. J Water WasteWater. 2011;22(3):10-8. [Persian]. [Link]
23. Maleki A, Eslami A. Isotherm and kinetics of arsenic (V) adsorption from aqueous solution using modified wheat straw. Iran Journal Health Environ. 2011;3(4):439-50. [Persian]. 26-Asgari AR, Vaezi F, Nasseri S, Dordelmann O, Mahvi AH, Dehghani Fard E. Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iran J Environ Health Sci Eng. 2008;5(4):277-82. [Link]
24. Abou EL-Reash YG, Otto M, Kenawy IM, Ouf AM. Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin. Int J Biol Macromol. 2011;49(4):513-22. [Link] [DOI:10.1016/j.ijbiomac.2011.06.001]
25. Shirzad Siboni M, Samarghandi MR, Azizian S, Kim WG, Lee SM. The removal of hexavalent chromium from aqueous solutions using modified holly sawdust: Equilibrium and kinetics studies. Environ Eng Res. 2011;16(2):55-60. [Link] [DOI:10.4491/eer.2011.16.2.55]
26. Asgari AR, Vaezi F, Nasseri S, Dordelmann O, Mahvi AH, Dehghani Fard E. Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iran J Environ Health Sci Eng. 2008;5(4):277-82. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.