Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 557-564 | Back to browse issues page

XML Persian Abstract Print

1- Biotechnology Department, Agricultural Sciences Faculty, Guilan University, Gilan, Iran
2- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , zahiri.j@gmail.com
Abstract:   (6327 Views)
Hordeum vulgare is a one-year-old herb of the Poaceae family. It is an important cereal used by humans which has been applied in many cases instead of wheat. The limitation of experimental methods is one of the important problems for identifying protein-protein interactions. So, in recent years, computational methods have played an important role in predicting and identifying protein-protein interactions. In this study, for constructing protein-protein interaction (PPI) network, the experimental PPI information of six model organisms includes Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Oryza sativa, and Arabidopsis thalian were extracted from the Intact database. Inparanoid was used for identifying barley orthologous proteins with model organisms. The Interolog method which was used in this study can predict protein-protein interactions by mapping protein interactions of the model organisms on orthologous proteins. After removing repetitive interactions, the final predicted barley PPI network contained 235966 interactions between 7350 proteins. This study is the first report presented on protein-protein interaction prediction in barley.
Full-Text [PDF 1009 kb]   (2024 Downloads)    
Article Type: Qualitative Research | Subject: Bioinformatics
Received: 2018/10/19 | Accepted: 2019/02/10 | Published: 2019/12/21

1. Wetie AGN, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC. Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci. 2014;71(2):205-28. [Link] [DOI:10.1007/s00018-013-1333-1]
2. Paul FE, Hosp F, Selbach M. Analyzing protein-protein interactions by quantitative mass spectrometry. Methods. 2011;54(4):387-95. [Link] [DOI:10.1016/j.ymeth.2011.03.001]
3. Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, et al. A proteome-scale map of the human interactome network. Cell. 2014;159(5):1212-26. [Link] [DOI:10.1016/j.cell.2014.10.050]
4. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173-8. [Link] [DOI:10.1038/nature04209]
5. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell. 2005;122(6):957-68. [Link] [DOI:10.1016/j.cell.2005.08.029]
6. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet. 2006;38(3):285-93. [Link] [DOI:10.1038/ng1747]
7. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440(7084):637-43. [Link] [DOI:10.1038/nature04670]
8. Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A. 2005;102(34):12123-8. [Link] [DOI:10.1073/pnas.0505482102]
9. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403(6770):623-7. [Link] [DOI:10.1038/35001009]
10. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, et al. High-quality binary protein interaction map of the yeast interactome network. Science. 2008;322(5898):104-10. [Link] [DOI:10.1126/science.1158684]
11. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, et al. A map of the interactome network of the metazoan C. elegans. Science. 2004;303(5657):540-3. [Link] [DOI:10.1126/science.1091403]
12. Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, Hirozane-Kishikawa T, et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods. 2009;6(1):47-54. [Link] [DOI:10.1038/nmeth.1279]
13. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, et al. Protein interaction mapping: A Drosophila case study. Genome Res. 2005;15(3):376-84. [Link] [DOI:10.1101/gr.2659105]
14. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A protein interaction map of Drosophila melanogaster. Science. 2003;302(5651):1727-36. [Link] [DOI:10.1126/science.1090289]
15. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, et al. A protein complex network of Drosophila melanogaster. Cell. 2011;147(3):690-703. [Link] [DOI:10.1016/j.cell.2011.08.047]
16. Jones AM, Xuan Y, Xu M, Wang RS, Ho CH, Lalonde S, et al. Border control-a membrane-linked interactome of Arabidopsis. Science. 2014;344(6185):711-6. [Link] [DOI:10.1126/science.1251358]
17. Walhout AJ, Boulton SJ, Vidal M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast. 2000;17(2):88-94. https://doi.org/10.1002/1097-0061(20000630)17:2<88::AID-YEA20>3.0.CO;2-Y [Link] [DOI:10.1002/1097-0061(20000630)17:23.0.CO;2-Y]
18. Zhang Y, Gao P, Yuan JS. Plant protein-protein interaction network and interactome. Curr Genomics. 2010;11(1):40-6. [Link] [DOI:10.2174/138920210790218016]
19. Zahiri J, Yaghoubi O, Mohammad-Noori M, Ebrahimpour R, Masoudi-Nejad A. PPIevo: Protein-protein interaction prediction from PSSM based evolutionary information. Genomics. 2013;102(4):237-42. [Link] [DOI:10.1016/j.ygeno.2013.05.006]
20. Dhillon GS, Kaur S, Oberoi HS, Spier MR, Brar SK. Agricultural-based protein by-products: Characterization and applications. In: Singh Dhillon G, editor. Protein byproducts: Transformation from environmental burden Into value-added products. Cambridge: Academic Press; 2016. pp. 21-36. [Link] [DOI:10.1016/B978-0-12-802391-4.00002-1]
21. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-6. [Link] [DOI:10.1038/nature11543]
22. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2013;42(D1):D358-63. [Link] [DOI:10.1093/nar/gkt1115]
23. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, et al. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2011;39(suppl-1):D698-704. [Link] [DOI:10.1093/nar/gkq1116]
24. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40(D1):D857-61. [Link] [DOI:10.1093/nar/gkr930]
25. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D. DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002;30(1):303-5. [Link] [DOI:10.1093/nar/30.1.303]
26. Goel R, Harsha HC, Pandey A, Prasad TK. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst. 2012;8(2):453-63. [Link] [DOI:10.1039/C1MB05340J]
27. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37(suppl-1):D412-6. [Link] [DOI:10.1093/nar/gkn760]
28. De Bodt S, Proost S, Vandepoele K, Rouzé P, Van De Peer Y. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics. 2009;10(288):1-15. [Link] [DOI:10.1186/1471-2164-10-288]
29. Geisler-Lee J, O'Toole N, Ammar R, Provart NJ, Millar AH, Geisler M. A predicted interactome for Arabidopsis. Plant Physiol. 2007;145(2):317-29. [Link] [DOI:10.1104/pp.107.103465]
30. Gu H, Zhu P, Jiao Y, Meng Y, Chen M. PRIN: A predicted rice interactome network. BMC Bioinform. 2011;12(161):1-13. [Link] [DOI:10.1186/1471-2105-12-161]
31. Sapkota A, Liu X, Zhao XM, Cao Y, Liu J, Liu ZP, et al. DIPOS: Database of interacting proteins in Oryza sativa. Mol Biosyst. 2011;7(9):2615-21. [Link] [DOI:10.1039/c1mb05120b]
32. Yang J, Osman K, Iqbal M, Stekel DJ, Luo Z, Armstrong SJ, et al. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana. Front Plant Sci. 2013;3:297. [Link] [DOI:10.3389/fpls.2012.00297]
33. Zhu G, Wu A, Xu XJ, Xiao PP, Lu L, Liu J, et al. PPIM: A protein-protein interaction database for maize. Plant Physiol. 2016;170(2):618-26. [Link] [DOI:10.1104/pp.15.01821]
34. Thanasomboon R, Kalapanulak S, Netrphan S, Saithong T. Prediction of cassava protein interactome based on interolog method. Sci Rep. 2017;7(1):17206. [Link] [DOI:10.1038/s41598-017-17633-2]
35. Yue J, Xu W, Ban R, Huang Sh, Miao M, Tang X, et al. PTIR: Predicted tomato interactome resource. Sci Rep. 2016;6:25047. [Link] [DOI:10.1038/srep25047]
36. Ding YD, Chang JW, Guo J, Chen D, Li S, Xu Q, et al. Prediction and functional analysis of the sweet orange protein-protein interaction network. BMC Plant Biol. 2014;14:213. [Link] [DOI:10.1186/s12870-014-0213-7]
37. Rodgers-Melnick E, Culp M, DiFazio SP. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS. BMC Genomics. 2013;14(1):608. [Link] [DOI:10.1186/1471-2164-14-608]
38. Sonnhammer ELL, Östlund G. InParanoid 8: Orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 2015;43(D1):D234-9. [Link] [DOI:10.1093/nar/gku1203]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.