Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 593-599 | Back to browse issues page

XML Persian Abstract Print

1- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Immunology Department, Medicine Faculty, Tarbiat Modares University, Tehran, Iran
3- Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
4- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , sadeghma@modares.ac.ir
Abstract:   (4374 Views)
Aims: One of the most important regenerative medical purposes is the production of alternative tissues with proper function. Fibroblast cells are one of the most important types of cells in the repair process that also play a role in the formation of blood vessels. Stimulation of fibroblastic cells requires the appearance of external signals to begin the proliferation and recall of other cells, as well as angiogenesis. The aim of this study was to investigate the effects of M13 in combination with RGD peptide on fibroblastic cells.
Materials and Methods: For this study, M13 bacteriophage was first amplified and isolated. Then RGD peptide was synthesized and purified. Then, isolated mouse fibroblastic cells were culture on surfaces coated with M13 bacteriophage, bacteriophage M13 and RGD, gelatin, and surfaces without coated as a control for 48 hours. MTT assay was used to measure the proliferation and survival of cells, and then the expression of FGF-2, TGF-β1 and VEGF-A genes was measured by real-time PCR.
Findings: The results of this study showed that the M13 and RGD bacteriophage increased cell proliferation and the fibroblast cell survival rate. In addition, expression of FGF-2, TGF-β1 and VEGF-A genes in cultured fibroblasts on the M13 and RGD bacteriophages surface increased significantly.
Conclusion: Our research showed that scaffolds of M13 bacteriophage and RGD peptide are nontoxic and bio-compatible so they can be a suitable candidate for induction of repair and angiogenesis in tissue engineering.
Full-Text [PDF 932 kb]   (861 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2018/12/20 | Accepted: 2019/01/26 | Published: 2019/12/21

1. Bearinger JP, Terrettaz S, Michel R, Tirelli N, Vogel H, Textor M, et al. Chemisorbed poly (propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater. 2003;2(4):259-64. [Link] [DOI:10.1038/nmat851]
2. Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27(16):3044-63. [Link] [DOI:10.1016/j.biomaterials.2005.12.024]
3. Meredith Jr JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4(9):953-61. [Link] [DOI:10.1091/mbc.4.9.953]
4. Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita JB, et al. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol. 2005;7(10):947-53. [Link] [DOI:10.1038/ncb1307]
5. Sevilla CA, Dalecki D, Hocking DC. Regional fibronectin and collagen fibril co-assembly directs cell proliferation and microtissue morphology. PloS One. 2013;8(10):e77316. [Link] [DOI:10.1371/journal.pone.0077316]
6. Kim Y, Ko H, Kwon IK, Shin K. Extracellular matrix revisited: Roles in tissue engineering. Int Neurourol J. 2016;20(Suppl 1):S23-9. [Link] [DOI:10.5213/inj.1632600.318]
7. Kim HD, Heo J, Hwang Y, Kwak SY, Park OK, Kim H, et al. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A. 2015;21(3-4):757-66. [Link] [DOI:10.1089/ten.tea.2014.0233]
8. Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, et al. Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomater. 2018;73:154-66. [Link] [DOI:10.1016/j.actbio.2018.04.039]
9. Jin HE, Lee SW. Engineering of M13 bacteriophage for development of tissue engineering materials. In: Wege Ch, Lomonossoff GP, editors. Virus-derived nanoparticles for advanced technologies. New York: Springer; 2018. pp. 487-502. [Link] [DOI:10.1007/978-1-4939-7808-3_32]
10. Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak‐Novakovic G, Freed LE. Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF‐2 during 2D expansion and BMP‐2 during 3D cultivation. J Cell Biochem. 2001;83(1):121-8. [Link] [DOI:10.1002/jcb.1203]
11. Trinkaus-Randall V, Nugent MA. Biological response to a synthetic cornea. J Control Release. 1998;53(1-3):205-14. [Link] [DOI:10.1016/S0168-3659(97)00254-X]
12. Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018;6:2. [Link] [DOI:10.1038/s41413-017-0005-4]
13. Rophael JA, Craft RO, Palmer JA, Hussey AJ, Thomas GPL, Morrison WA, et al. Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol. 2007;171(6):2048-57. [Link] [DOI:10.2353/ajpath.2007.070066]
14. Andreopoulos FM, Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials. 2006;27(11):2468-76. [Link] [DOI:10.1016/j.biomaterials.2005.11.019]
15. Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35. [Link] [DOI:10.3389/fimmu.2011.00035]
16. Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, et al. RGD-peptides for tissue engineering of articular cartilage. Biomaterials. 2002;23(16):3455-63. [Link] [DOI:10.1016/S0142-9612(02)00052-2]
17. Merzlyak A, Indrakanti Sh, Lee SW. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett. 2009;9(2):846-52. [Link] [DOI:10.1021/nl8036728]
18. Yoo SY, Shrestha KR, Jeong SN, Kang JI, Lee SW. Engineered phage nanofibers induce angiogenesis. Nanoscale. 2017;9(43):17109-17. [Link] [DOI:10.1039/C7NR03332J]
19. Chung WJ, Merzlyak A, Lee SW. Fabrication of engineered M13 bacteriophages into liquid crystalline films and fibers for directional growth and encapsulation of fibroblasts. Soft Matter. 2010;6(18):4454-9. [Link] [DOI:10.1039/c0sm00199f]
20. Zielins ER, Atashroo DA, Maan ZN, Duscher D, Walmsley GG, Hu M, et al. Wound healing: An update. Regen Med. 2014;9(6):817-30. [Link] [DOI:10.2217/rme.14.54]
21. Ruiter D, Bogenrieder T, Elder D, Herlyn M. Melanoma-stroma interactions: Structural and functional aspects. Lancet Oncol. 2002;3(1):35-43. [Link] [DOI:10.1016/S1470-2045(01)00620-9]
22. Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, et al. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: Potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 2005;11(1-2):41-9. [Link] [DOI:10.1089/ten.2005.11.41]
23. Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest. 2014;124(2):466-72. [Link] [DOI:10.1172/JCI70050]
24. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156-72. [Link] [DOI:10.1038/cr.2009.5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.