Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 681-697 | Back to browse issues page

XML Persian Abstract Print

1- National Research Institute for Science Policy (NRISP), Tehran, Iran
2- Information Technology Management Department, Management & Economics Faculty, Tarbiat Modares University, Tehran, Iran, Management & Economics Faculty, Tarbiat Modares University, Nasr, Jalal-Al-Ahmad Highway, Tehran, Iran , ghazinoory@modares.ac.ir
3- Engineering Department, Technical & Engineering Faculty, University of Science & Culture, Tehran, Iran
4- Technology Studies Institute (TSI), Tehran, Iran
Abstract:   (3030 Views)
With the approval of the law for supporting knowledge-based firms in 2010, a new wave in Iran's science, technology and innovation system began with a focus on the knowledge based economy and innovation-based. Currently, there are more than 4,000 knowledge-based firms in Iran that nearly 5% of them are active in biotechnology. The aim of the present study is to design an empirical model of the relationship between financial and tax incentives of this law on some of the performance indicators of biotechnology knowledge-based firms. For this purpose, after analyzing the content of related documents and designing the study model, for evaluating the direct and interacting effects between policy tools, identifying the important empirical factors and their level, "23 factorial design" was used. Study target community includes 113 manufacturing knowledge-based firms in the field of biotechnology. The findings of this study on input additionality indicators show the positive effect of the threefold interaction of factors on the R&D expenditure and the positive effects of commercialization financing and technology financing and their interactions on R&D employee. In the present study, there was no relationship between the effectiveness of policy tools on output additionality indicators.
Full-Text [PDF 670 kb]   (686 Downloads)    
Article Type: Original Research | Subject: Industrial Biotechnology
Received: 2019/05/18 | Accepted: 2019/07/28 | Published: 2019/12/21

1. United Nation. Science, technology and innovation policy review- Islamic Republic of Iran. New York & Geneva: United Nation; 2016. [Link]
2. Chiekezie O, Nzewi H, Ikon MA, Chiekezie Ch. A review of entrepreneurship development in Japan, south Africa and Malaysia: Lessons for Nigeria. Int J Innov Res Dev.2015;4(2):129-35. [Link]
3. Forkuoh SK, Li Y, Affum-Osei E, Quaye I. Informal financial services, a panacea for SMEs financing? A case study of SMEs in the Ashanti Region of Ghana. Am J Ind Bus Manag. 2015;5(12):779-93. [Link] [DOI:10.4236/ajibm.2015.512075]
4. Bronzini R, Iachini E. Are incentives for R&D effective? Evidence from a regression discontinuity approach. Am Econ J Econ Policy. 2014;6(4):100-34. [Link] [DOI:10.1257/pol.6.4.100]
5. Marandi V, Tabatabaeian SH, Jafari P, Azarnoosh M. An analysis on technological innovation system regarding Iranian bio-products (focused on human vaccines). Innov Manag J. 2017;6(3):1-26. [Persian] [Link]
6. Hysing E. From government to governance? A comparison of environmental governing in Swedish forestry and transport. Governance. 2009;22(4):647-72. [Link] [DOI:10.1111/j.1468-0491.2009.01457.x]
7. Corchuelo B, Martínez Ros E. The effects of fiscal incentives for R & D in Spain. Madrid: Universidad Carlos III de Madrid; 2009 March. [Link]
8. Köhler C, Laredo P, Rammer C. The impact and effectiveness of fiscal incentives for R&D. In: Edler J, Cunningham P, Gök A, Shapira P, editors. Handbook of innovation policy impact. Cheltenham: Edward Elgar Publishing; 2012. [Link]
9. Saadat S, Karimi-Jashni A. Optimization of Pb (II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem Eng J. 2011;173(3):743-9. [Link] [DOI:10.1016/j.cej.2011.08.042]
10. Geyikci F, Büyükgüngör H. Factorial experimental design for adsorption silver ions from water onto montmorillonite. Acta Geodyn Geomater. 2013;10(3):363-70. [Link] [DOI:10.13168/AGG.2013.0035]
11. Peters GT, Kiabel BD. Tax incentives and foreign direct investment in Nigeria. IOSR J Econ Financ. 2015;6(5):10-20. [Link]
12. Castellacci F, Lie MC. Do the effects of R&D tax credits vary across industries? A meta-regression analysis. Res Policy. 2015;44(4):819-32. [Link] [DOI:10.1016/j.respol.2015.01.010]
13. Larédo P, Köhler C, Rammer C. The impact of fiscal incentives for R&D. In: Edler J, Cunningham P, Gök A, Shapira P, editors. Handbook of innovation policy impact. Cheltenham: Edward Elgar Publishing; 2016. pp. 18-53. [Link]
14. Technopolic Group & Mioir. Evaluation of innovation activities: Guidance on methods and practices. Brussels: European Commission; 2012. [Link]
15. Radicic D, Pugh G, Hollanders H, Wintjes R, Fairburn J. The impact of innovation support programs on small and medium enterprises innovation in traditional manufacturing industries: An evaluation for seven European :union: regions. Environ Plan C Gov Policy. 2016;34(8):1425-52. [Link] [DOI:10.1177/0263774X15621759]
16. Edler J, Shapira Ph, Cunningham P, Gök A. Evidence on the effectiveness of innovation policy intervention. In: Edler J, Cunningham P, Gök A, Shapira P, editors. Handbook of innovation policy impact. Cheltenham: Edward Elgar Publishing; 2016. pp. 543-56. [Link] [DOI:10.4337/9781784711856]
17. Buisseret TJ, Cameron HM, Georghiou L. What difference does it make? Additionality in the public support of R&D in large firms. Int J Technol Manag. 1995;10(4-6):587-600. [Link]
18. Afcha S, García-Quevedo J. The impact of R&D subsidies on R&D employment composition. Ind Corp Chang. 2014;25(6):955-75. [Link] [DOI:10.7835/ccwp-2014-11-0003]
19. Iran University of Science and Technology. Protection act for knowledge-based companies and institutions and the commercialisation of inventions [Internet]. Tehran: Iran University of Science and Technology; 2010 [cited 2018 December 12]. Available from: https://b2n.ir/788962. [Persian] [Link]
20. Sprent P. Frank Yates and experimental design-reflections inspired by his selected papers. J R Stat Soc.1973;22(2):151-8. [Link] [DOI:10.2307/2987367]
21. Preece DA. R. A. Fisher and experimental design: A review. Biometrics. 1990;46(4):925-35. [Link] [DOI:10.2307/2532438]
22. Gilmour SG, Trinca LA. Optimum design of experiments for statistical inference. J R Stat Soc. 2012;61(3):345-401. [Link] [DOI:10.1111/j.1467-9876.2011.01000.x]
23. DeGlopper DR. The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation and modeling. Int Leg Inf. 1992;20(1):63-4. [Link] [DOI:10.1017/S0731126500010933]
24. Jensen WA. Design and analysis of experiments by Douglas Montgomery: A supplement for using JMP. J Qual Technol. 2017;46(2):181. [Link] [DOI:10.1080/00224065.2014.11917962]
25. Assessment and Qualificationof Knowledge Based firms Committee. Assessing the implementation of supporting knowledge- based firms law [Internet]. Tehran: Vice Presidency for Science and Technology; 2016 [cited 2018 December 12]. Available from: http://daneshbonyan.isti.ir/index.aspx?pageid=2994. [Persian] [Link]
26. Duguet E. The effect of the incremental R&D tax credit on the private funding of R&D an econometric evaluation on French firm level data. Revue D'économie Politique. 2012;122(3):405-35. [Link] [DOI:10.3917/redp.223.0405]
27. Lokshin B, Mohnen P. How effective are level-based R&D tax credits? Evidence from the Netherlands. Appl Econ. 2012;44(12):1527-38. [Link] [DOI:10.1080/00036846.2010.543083]
28. García‐Quevedo J. Do public subsidies complement business R&D? A meta‐analysis of the econometric evidence. Kyklos. 2004;57(1):87-102. [Link] [DOI:10.1111/j.0023-5962.2004.00244.x]
29. Cunningham P, Gök A, Larédo P. The impact of direct support to R&D and innovation in firms. In: Edler J, Cunningham P, Gök A, Shapira P, editors. Handbook of innovation policy impact. Cheltenham: Edward Elgar Publishing; 2016. pp. 54-107. [Link]
30. Goolsbee A. Investment tax incentives, prices, and the supply of capital goods. Q J Econ. 1998;113(1):121-48. [Link] [DOI:10.1162/003355398555540]
31. Tabatabaeian SH, Tahoori HR, Taghva MR, Taghavi Fard SM. Analysis of innovation ecosystem of Iranian biopharmaceuticals. J Technol Dev Manag. 2018;6(1):9-45. [Persian] [Link]
32. Falk R. Measuring the effects of public support schemes on firms' innovation activities: Survey evidence from Austria. Res Policy. 2007;36(5):665-79. [Link] [DOI:10.1016/j.respol.2007.01.005]
33. Autio E, Kanninen S, Gustafsson R. First-and second-order additionality and learning outcomes in collaborative R&D programs. Res Policy. 2008;37(1):59-76. [Link] [DOI:10.1016/j.respol.2007.07.012]
34. Clarysse B, Wright M, Mustar P. Behavioural additionality of R&D subsidies: A learning perspective. Res Policy. 2009;38(10):1517-33. [Link] [DOI:10.1016/j.respol.2009.09.003]
35. Arqué-Castells P, Mohnen P. Sunk costs, extensive R&D subsidies and permanent inducement effects. J Ind Econ. 2015;63(3):458-94. [Link] [DOI:10.1111/joie.12078]
36. Gok A, Edler J. The use of behavioural additionality in innovation policy-making. Res Eval. 2012;21(4):306-18. [Link] [DOI:10.1093/reseval/rvs015]
37. Guellec D, Van Pottelsberghe De La Potterie B. The impact of public R&D expenditure on business R&D. Econ Innov New Technol. 2003;12(3):225-43. [Link] [DOI:10.1080/10438590290004555]
38. Bérubé Ch, Mohnen P. Are firms that receive R&D subsidies more innovative?. Can J Econ. 2009;42(1):206-25. [Link] [DOI:10.1111/j.1540-5982.2008.01505.x]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.