Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 673-679 | Back to browse issues page

XML Persian Abstract Print


1- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , t.tohidi@modares.ac.ir
3- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (3974 Views)
Recent researches on the application of nanoparticles have been focused on nanostructures of gold with rod morphology, due to having outstanding optical properties for diagnostics and therapeutics of the diseases. The rod morphology of the nanostructures enables strong and sensitive absorption of surface plasmon in the infrared region. In the present research, based on the sensitivity of surface plasmon resonance of gold nanorods to trace changes in the local environment, as well as the importance of rapid detection of trace amounts of albumin in urine, functionalization, and stability of these nanostructures with anti-albumin antibody has been investigated in different concentrations, volumes, time and pH changes. The results of spectroscopic studies of different samples in the visible spectrum near-infrared waves showed that gold nanorods have desirable stability, and their rod morphology characteristic is maintained. The study of the temporal stability of samples showed that the complex samples were stable up to 48 hours for sensing applications. Primary monitoring of the function of the nanobiosensor in the presence of albumin with two normal and abnormal levels of concentration revealed remarkable changes in interparticle distance, size, and morphology of the nanostructures. According to this research, the rod nanostructures can be used to design simple nanobiosensors.
Full-Text [PDF 540 kb]   (1834 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2019/07/16 | Accepted: 2019/08/26 | Published: 2019/12/19

References
1. Marangoni VS, Cancino-Bernardi J, Zucolotto V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods-a review. J Biomed Nanotechnol. 2016;12(6):1136-58. [Link] [DOI:10.1166/jbn.2016.2218]
2. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537-56. [Link] [DOI:10.1016/j.talanta.2018.02.088]
3. Shiwa T, Nishimura M, Kato M. The effectiveness of the semi-quantitative assessment of microalbuminuria using routine urine dipstick screening in patients with diabetes. Intern Med. 2018;15(4):503-6. [Link] [DOI:10.2169/internalmedicine.9069-17]
4. Tohidi Moghadam T, Ranjbar B. Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme. Talanta. 2015;144:778-87. [Link] [DOI:10.1016/j.talanta.2015.06.025]
5. Špačková B, Wrobel P, Bocková M, Homola J. Optical biosensors based on plasmonic nanostructures: A review. ProcIEEE. 2016;104(12):2380-408. [Link] [DOI:10.1109/JPROC.2016.2624340]
6. Tohidi Moghadam T, Ranjbar B, Khajeh K, Etezad SM, Khalifeh K, Ganjalikhany MR. Interaction of lysozyme with gold nanorods: Conformation and activity investigations. Int J Biol Macromol. 2011;49(4):629-36. [Link] [DOI:10.1016/j.ijbiomac.2011.06.021]
7. Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Effic Technol. 2017;3(4):516-27. [Link] [DOI:10.1016/j.reffit.2017.08.002]
8. Sengani M, Grumezescu AM, Devi Rajeswari V. Recent trends and methodologies in gold nanoparticle synthesis-a prospective review on drug delivery aspect. OpenNano. 2017;2:37-46. [Link] [DOI:10.1016/j.onano.2017.07.001]
9. An L, Wang Y, Tian Q, Yang Sh. Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy. Materials. 2017;10(12):1372. [Link] [DOI:10.3390/ma10121372]
10. Tohidi Moghadam T, Ranjbar B, Khajeh K. Conformation and activity of lysozyme on binding to two types of gold nanorods: A comparative study. Int J Biol Macromol. 2012;51(1-2):91-6. [Link] [DOI:10.1016/j.ijbiomac.2012.04.020]
11. Allen JM, Xu J, Blahove M, Canonico-May SA, Santaloci TJ, Braselton ME, et al. Synthesis of less toxic gold nanorods by using dodecylethyldimethylammonium bromide as an alternative growth-directing surfactant. J Colloid Interface Sci. 2017;505:1172-6. [Link] [DOI:10.1016/j.jcis.2017.06.101]
12. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Biosens Res. 2016;9:17-22. [Link] [DOI:10.1016/j.sbsr.2016.04.002]
13. Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med. 2014;6(6):172-8. [Link] [DOI:10.1016/j.jecm.2014.10.015]
14. Toto RD. Microalbuminuria: Definition, detection, and clinical significance. J Clin Hypertens. 2004;6(S11):2-7. [Link] [DOI:10.1111/j.1524-6175.2004.4064.x]
15. Huang X, Neretina S, El‐Sayed MA. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21(48):4880-910. [Link] [DOI:10.1002/adma.200802789]
16. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49. [Link] [DOI:10.1016/j.jconrel.2017.03.008]
17. Shams S, Bakhshi B, Tohidi Moghadam T, Behmanesh M. A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnol. 2019;17(1):43. [Link] [DOI:10.1186/s12951-019-0476-0]
18. Tsai JZ, Chen CJ, Settu K, Lin YF, Chen CL, Liu JT. Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosens Bioelectron. 2016;77:1175-82. [Link] [DOI:10.1016/j.bios.2015.11.002]
19. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957-62. [Link] [DOI:10.1021/cm020732l]
20. Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem Mater. 2004;16(19):3633-40. [Link] [DOI:10.1021/cm0492336]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.