جستجو در مقالات منتشر شده


۴ نتیجه برای نعمانی

حسین دانافر، علیرضا نعمانی، مجید صادقی‌زاده،
دوره ۱۰، شماره ۳ - ( تابستان ۱۳۹۸ )
چکیده

فناوری نانو در حال حاضر یکی از رویکردهای امیدبخش برای تشخیص و درمان سرطان است. سیستم‌های مبتنی بر پلیمرها به‌دلیل فرآیندهای تولید ساده و تنوع در عملکرد و روش‌های اصلاح پلیمر، جذاب‌تر هستند. پلی‌اتیلن‌گلیکول (PEG) و پلی‌کاپرولاکتون (PCL) دو پلیمر سنتزی زیست‌سازگار مورد تایید FDA بوده که اغلب در صنایع دارویی مورد استفاده قرار می‌گیرند. غیر از حامل‌های دارورسانی، در درمان سرطان بحث ایمنی مواد تشکیل‌دهنده فعال نیز بسیار چالش‌برانگیز است. عوارض جانبی شیمی‌درمانی یکی از مهم‌ترین علل مرگ‌ومیر بیماران در بسیاری از سرطان‌ها است. کورکومین استخراج‌شده به‌طور طبیعی، یکی از جالب‌ترین عوامل ضدسرطان است که اثرات انتخابی اثباتشده روی سلول‌های سرطانی داشته و منجر به حداقل عوارض جانبی در طول درمان می‌شود. کورکومین به‌عنوان عامل اصلی، در درمان ترکیبی سرطان‌های مختلف آزمایش شده است. مطالعات متعدد ایمنی و کارکرد کورکومین در دوزهای مختلف تجویزشده را نشان می‌دهند. با این حال، مانع اصلی در استفاده از کورکومین، حلالیت پایین آن در آب و قابلیت دسترسی بیولوژیک کم و متغیر پس از تزریق است. بنابراین در این مطالعه سعی شد حلالیت کورکومین با استفاده از یک سیستم نانوذره دی‌بلاک‌کوپلیمر نوین PEG-PCL افزایش یابد. ابتدا کوپلیمر PEG-PCL سنتز و سپس خصوصیاتش با روش‌های GPC، FTIR و H-NMR مشخص شد. پس از آن، کورکومین در ساختار میسلی PEG-PCL به‌صورت بهینه کپسوله و سمیت نانوذرات تهیه‌شده در کشت سلول MCF-۷ ارزیابی شد. طبق نتایج نانوذرات آماده‌شده می‌توانند مولکول‌های هیدروفوب کورکومین را به‌طور موثری به دام انداخته، حلالیت آن را بهبود بخشیده و باعث افزایش فعالیت آن در ازبین‌بردن سلول سرطانی در شرایط برون‌تنی شوند.

شهلا کیان‌امیری، علی دیناری، علیرضا نعمانی، مجید صادقی‌زاده، محسن مردی، بهرام دارایی،
دوره ۱۰، شماره ۳ - ( تابستان ۱۳۹۸ )
چکیده

آثار آنتی‌اکسیدانی، ضدسرطانی، ضدالتهاب و ضدمیکروب کورکومین دلایلی بر ارزشمندی این ماده در تحقیقات دارویی و نقش آن در بهداشت عمومی انسان است. اثر ضدسرطانی کورکومین ناشی از تاثیر این دارو بر دامنه‌ای از مسیرهای سلولی و مولکولی درگیر در سرطان است. با این وجود، محلولیت کم، زیست‌دسترسی پایین و متابولیزم سریع آن اثر نامناسبی بر خصوصیت درمانی آن گذاشته است. در این تحقیق، به‌واسطه کانجوگه‌کردن مولکول‌های کورکومین به ساختار دندریمری نسل چهار (پلی‌آمیدوآمین)، یک حامل نانوابعاد مناسب تهیه شد. مشخصه‌یابی نانوسامانه و تایید فرآیند کانجوگه‌شدن به‌وسیله روش‌های FT-IR و ۱H-NMR انجام شد. اندازه و بار سطحی ذرات با دستگاه DLS مورد ارزیابی قرار گرفت. میزان بارگذاری مولکول‌های کورکومین روی نانوسامانه بررسی شد و در ادامه آزمایش‌های سلولی از جمله سمیت، ROS سلولی و آپاپتوز به‌وسیله آزمون MTT و تکنیک فلوسایتومتری مورد ارزیابی قرار گرفت. نتایج این تحقیق عمل کانجوگه‌شدن کورکومین را تایید کرد و ذرات به‌دست‌آمده اندازه تقریبی ۱۰۰نانومتر داشتند. نتایج نشان داد که میزان بارگذاری کورکومین در این نانوسامانه حدود چهار مولکول به‌ازای هر مولکول دندریمر است. آزمایش‌های سلولی نشان داد که میزان سمیت، ROS سلولی و آپاپتوز ناشی از نانوحامل دندریمری در مقایسه با کورکومین آزاد بیشتر بوده است. عملکرد بهتر نانوسامانه دندریمری به‌واسطه بهبود خواص فیزیکوشیمیایی و افزایش محلولیت کورکومین بوده است. در مجموع، این نانوحامل به‌عنوان یک سامانه هوشمند و کارآمد می‌تواند برای رسانش داروهای آب‌گریز به سلول‌های سرطانی در نظر گرفته شود.


دوره ۱۶، شماره ۳ - ( ۳-۱۳۹۵ )
چکیده

شبیه سازی دریچه آئورت به دلیل ساختار آناتومیک پیچیده و خواص مکانیکی غیرخطی و شرایط بارگذاری وابسته به زمان از جمله مسائل مهم مورد توجه مدلسازی در حیطه بیومکانیک است. از طرف دیگر شبیه سازی مناسب عملکرد این دریچه در مطالعه رفتار، تشخیص بیماری و ترمیم احتمالی آن نقش به سزایی دارد. هدف اصلی این مطالعه یکسو سازی ویژگی‌های مهم فیزیولوژیکی و شبیه سازی ساختاری واقعی دریچه آئورت قلب صورت می‌باشد. برای این منظور یک مدل هندسه بدون فشار مناسب با استفاده از داده آناتومیک توسعه یافته و شبیه سازی اجزای محدود صریح دینامیکی از دریچه طبیعی آئورت انسان با در نظر گرفتن رفتار ماده به دو صورت الاستیک خطی و هایپرالاستیک غیر خطی برای لیف لت ‌ها و بافت دریچه مورد بررسی قرار گرفته که شرایط بارگذاری آن از حالت بدون فشار آغاز شده است. مشاهده شد که اگرچه الگوی تنش کرنش مشابهی در دو مدل خطی و غیر خطی بر روی دریچه آئورت در طول سیکل قلبی ایجاد می‌شود اما طبیعت هایپرالاستیک بافت دریچه در توزیع مناسب تر تنش و کاهش کرنش تأثیر به سزایی در دینامیک حرکت دریچه از حالت سیستولیک به دیاستولیک دارد. همچنین مقادیر تغییر شکل مربوط به دیواره دریچه آئورت در دو مدل خطی و غیر خطی نسبت به تغییر شکل لیف لت‌ها بسیار متفاوت بوده و اهمیت مدل سازی هایپرالاستیک را برای بافت دریچه نمایان می‌کند. اثر تجربه محیط یا مانورهای با شتاب زیاد بر رفتار دینامیکی دریچه نیز بررسی شده است.

دوره ۱۷، شماره ۱ - ( ۱-۱۳۹۳ )
چکیده

هدف: نقش ضد سرطان کورکومین از گیاه ادویه‏ای زردچوبه در سال‏های اخیر در تحقیقات متعددی به اثبات رسیده است. کورکومین قادر به مهار چندین مسیر پیام‏رسانی سلولی، ممانعت از تکثیر سلولی، تهاجم، متاستاز و رگ‏زایی است اما محلولیت بسیار ضعیف آن در آب، کاربرد این ماده ضد سرطانی مهم را با مشکل مواجه می‏سازد. در این تحقیق با طراحی و سنتز یک پلیمر دو بخشی نوین مونومتوکسی پلی اتیلن گلیکول- اولئات (mPEG-OA) و اضافه کردن پلی اتیلن گلیکول به سطح حامل دندریمری پلی آمیدو آمین (PAMAM)، تلاش شد زیست دسترسی کورکومین به سلول‏های سرطانی افزایش یابد. مواد و روش‏ها: غلظت بحرانی تشکیل میسل، بارگیری دارو و سمیت سلولی روی رده سلولی کارسینومای گلایوبلاستومای مغزی (U۸۷MG) بررسی شد. نتایج: نتایج مطالعات میکروسکوپ نیروی اتمی (AFM) و پراکنش نوری پویا (DLS) نشان می‌دهد نانوذرات mPEG-OA طراحی شده دارای دو جمعیت خود آرا شامل میسل‏ها و پلیمروزوم‌ها است. غلظت بحرانی تشکیل میسل mPEG-OA بسیار پایین (۰۳/۰ گرم در لیتر) است. سمیت IC۵۰ برای کورکومین آزاد، کورکومین بارگذاری شده در mPEG-OA و کورکومین بارگذاری شده در دندریمر پلی آمیدو آمین، به ترتیب ۴۸، ۲۴ و ۱۳ میکرومولار محاسبه شد. همچنین کلیه تیمارهای دندریمر پلی آمیدو آمین پگیله شده غیر سمی تشخیص داده شد. نتیجه‏گیری: نتایج بیان می‏کند با استفاده از این نانوحامل‏ها، زیست دسترسی کورکومین به‏طور معنی‏داری نسبت به کورکومین آزاد افزایش می‏یابد. در نهایت این تحقیق نشان می‏دهد این نانوحامل‏های کورکومین می‏تواند به‏عنوان سیستم‏های دارورسان مناسب برای انتقال کورکومین به سلول‏های سرطانی در نظر گرفته شود.

صفحه ۱ از ۱