Search published articles
Showing 2 results for Banimostafa arab
M. Banimostafa arab, S. Kushkestani, V. Mehdizadehfar, H. Sajedi,
Volume 10, Issue 3 (Summer 2019)
Abstract
Transtympanic Promontory Stimulation Test (TPST) has been suggested to be a useful tool in predicting the effectiveness of cochlear implant surgery. This test is helpful for patients with poor auditory neuron functioning and individuals with a long auditory deprivation. It can provide a way to find a correlation between the dynamic range of the auditory nerve with the electrical dynamic range of the cochlear implant and estimate sound perception. In this study, an electrical stimulation device is designed and constructed that can produce stimulation with specific features. The device has two parts, hardware, and software. Software is designed as a user interface which installed on PC and helps the user to do a lot of operations for creating a desired electrical stimulation easily utilizing software menus. The data are transferred via serial port and network to hardware and finally, the stimulation is done through an active electrode that located in auditory canal and a passive electrode that can be placed on the mastoid or forehead. To ensure the proper functioning of the device, electrical tests have been done in different conditions. The results are shown that currently generated in a constant load resistance is linear and independent of load resistance.
Volume 18, Issue 3 (5-2018)
Abstract
Nowadays, the use of polymer composite materials in various industries has been increased due to their good mechanical properties, lightness, sound and thermal insulation and corrosion resistance. Over the past two decades, carbon fiber reinforced polymer (CFRP) materials have been widely used in aerospace and automotive industries. These materials may be subjected to impact during manufacturing or service period and a lsmal impact region may be produced in them. This small defect can reduce the mechanical properties of the structure and lead to its failure. Therefore, it is necessary to use a method for defect detection in these materials. In this study, a polymer composite sample made of carbon fiber in polyester resin was made and subjected to impact test. To consider the repeatability of the defect detection process, the sample was subjected to four various impact tests and the defect areas were evaluated using penetrant-enhanced X-ray radiography and ultrasound immersion pulse-echo C-scan. The image obtained from the penetrant-enhanced X-ray method was scanned using a digital scanner, and the image of the ultrasound C-scan test was calibrated, taking into account the step of scanning.The areas of the defect region were obtained using Imagej software. The results show that these methods are able to detect and measure the impact area in the composite sample and Ultrasonic C-scan method detect impact area more accurately.