Search published articles


Showing 1 results for Ebrahimi Samani

S. Ebrahimi Samani, S.m. Asghari , H. Naderimanesh , S. Hoseinkhani ,
Volume 9, Issue 2 (Spring 2018)
Abstract

Aims: Among different nanosystems, polymeric nanoparticles are highly regarded because of their potential to be used as drug carrier. poly(ethylene glycol)-block-lactide-glycolide (PEG-PLGA) is an amphiphilic copolymer that can be used to carry water-soluble drugs and drugs and molecules insoluble in water. PEG-PLGA polymeric nanoparticles can reduce renal filtration and drug toxicity; they are also biodegradable and biocompatible. The aim of this study was to optimize preparation of PEG-PLGA nanoparticles by solvent evaporation method.
Materials and Methods: In the present experimental study, PEG-PLGA nanoparticles with a diameter of 150nm and a zeta potential of -10 were prepared by solvent evaporation method. Then, the physicochemical properties of nanoparticles were carefully examined.
Findings: By increasing the polymer concentration and the percentage of polyvinyl alcohol, particle size increased. The production of nanoparticles with a concentration of 5mg/ml copolymer, a 2% w/v polyvinyl alcohol concentration, and in a 12:1 volume ratio showed the best size and superficial load. Morphologically, the nanoparticles were structurally similar and spherical. According to the FTIR spectrum, the peak in 2900-13000cm region was in accordance with the tensile bond C-H in CH3. A strong peak in 1760cm-1 was related to the tensile-CO that showed the copolymer formation.
Conclusion: The production of PEG-PLGA nanoparticles in a concentration of 5mg/ml copolymer, 2% w/v of polyvinyl alcohol concentration, and in a 12:1 volume ratio shows the best size and superficial load; also, the nanoparticles are structurally similar and spherical.
 


Page 1 from 1