Search published articles


Showing 2 results for Haghirosadat

Mojtaba Ansari, Mahdi Eshghanmalek, Bibi Fatemeh Haghirosadat,
Volume 12, Issue 3 (summer 2021)
Abstract

Abstract
Aim and Background: Today, the use of medicinal plants in the cancer treatment due to less side effects has been considered. Silybum marianum is a medicinal herb of Asteraceae, which is used in the treatment of liver diseases and gallbladder diseases, cancer, cardiovascular diseases. The encapsulation of bioactive materials in nano-liposomes is an effective approach to regulate drug release, increase stability, protect them from environmental reactions, reduce volatility, and increase its effects. The aim of this study was encapsulation of the extract of Silybum marianum in to liposomes and to evaluate the physico-chemical in order to effect on liver cancer cells
 
Materials and Methods: In this study, extract of Silybum marianum was prepared by Soxhlet method. Liposomal vesicles were prepared by thin-film hydration method and the extract of Silybum marianum was loaded. Finally, the nanoparticles were assayed for encapsulation efficiency, release profile and physicochemical properties such as particle size, zeta potential, morphology, and FTIR.
Results: Nanoliposome containing Silybum marianum extract had 63.37% encapsulation efficiency and size 122 nm zeta potential -13.1 and the dispersion index 0.197. The release of herbal extract of Silybum marianum was controlled. There is no chemical interaction between the extract and the liposome and is morphologically homogeneous and had a spherical structure.
Conclusion: The results of this study show that the extracts of Silybum marianum can be encapsulated in appropriate size and function in nanoliposomal forms, so liposomes are a suitable carrier for the Silybum marianum extract.
 
Mojtaba Ansari, Mohammad Amin Estabraghi, Bibi Fatemeh Haghirosadat, Mohammad Taebpour,
Volume 13, Issue 2 (1-2023)
Abstract

Chemotherapy is one of the methods used in the treatment of cancer. Not being targeted has many side effects for the patient. The use of nano-carriers, including nano-liposomes, is a very effective way to target chemotherapy. In this study, a liposomal system containing doxorubicin was designed and evaluated for its effect on lung cancer cells.
In this in vitro study, two liposomal systems were prepared by the method of thin-film hydration and using different concentrations of phosphatidylcholine and cholesterol. Doxorubicin was then loaded into the systems. Finally, one of the systems was selected based on the drug loading rate and drug release pattern. At the end, the selected drug delivery system in terms of particle size, zeta potential, liposomal vesicle appearance, and the interaction between the drug and the system was investigated.
The selected liposomal system contains doxorubicin with an encapsulation efficiency of 58.89%, size of 273 nm, dispersion index of 0.458 and zeta potential of -35.7 mv. Doxorubicin release from liposomes was controlled and no chemical interaction was observed between liposomes and referees. Liposomal vesicles are also spherical and have a smooth surface.
The results of this study show that nano-liposomes can be prepared with appropriate formulation containing doxorubicin using nanotechnology. Which has good physicochemical properties. Therefore, this liposomal system can be recommended for further cancer-related research.
 

Page 1 from 1