Search published articles


Showing 3 results for Mohamad Soltani

F.s. Hosseini, B. Mohamad Soltani, H. Baharvand , S. Hosseinkhani ,
Volume 10, Issue 4 (Fall 2019)
Abstract

The SPTBN4 gene, a part of the spectrin protein family, plays important roles in various cellular processes, including cell cycle, nerve cell development, and so on. Recently, a new miRNA has been found in this SPTBN4 gene, which was registered at the NCBI database. The aim of the present study was to investigate the expression of this miRNA, called SPTBN4-miR1, in the process of differentiation of human embryonal carcinoma cell line NT2 and also the overexpression effect of this miRNA on the differentiation of these cells. RT-qPCR results indicate that SPTBN4-miR1-5p and SPTBN4-miR1-3p show a significant increase in expression in the process of neural differentiation from day three until the 8th and 14th day of differentiation. Then, after overexpressing the SPTBN4-miR1 precursor in NT2 cells and retinoic acid treatment, the expression of pluripotent and differentiation revealed the role of SPTBN4-miR1-5p and SPTBN4-miR1-3p in promoting differentiation and exclusion from the pluripotent state. It seems that by making further studies and finding out the possible targets of these miRNAs, a distinctive marker can be achieved and used to improve the differentiation process.

Sadat Dokanehiifard, Tabassom Hassannia Kolagar, B. Mohamad Soltani,
Volume 13, Issue 3 (1-2023)
Abstract

Cardiovascular diseases (CVDs) are globally the number 1 cause of death. Despite improvement in treatment strategies, heart disorders are strongly increasing. Therefore, identification of new regulatory factors involved in the cardiac differentiation is very important. TRKC receptor, part of the large family of receptor tyrosine kinases, is involved in development of the heart and central nervous system. There are many contradictory functions related to the TRKC gene which might be attributed to the non-coding RNAs located in it. Recently, a novel miRNA, hsa-miR-11181-5p located in TRKC gene, has been reported which is involved in nervous differentiation. MiRNAs are small non-coding RNAs regulating their target genes via mRNA degradation or protein inhibition. The goal of the present study was to investigate the expression pattern of hsa-miR-11181-5p during the course of cardiosphere-derived cells (CDCs) differentiation.
Ali Fasihi, Hossein Nemati, Farnoush Kabiri, Hoda Hasheminasab, Bahram Mohamad Soltani,
Volume 14, Issue 3 (2-2024)
Abstract

The activity of Wnt signaling pathway is increased in colorectal cancer. For this reason, finding new positive and negative regulators for this pathway is a treatment and diagnostic strategy of colorectal cancer. Our bioinformatics analysis indicated that hsa-miR-424 (miR-424) could be a possible regulator of the Wnt signaling pathway. Accordingly, the expression level of miR-424 in colorectal cancer tissues was elevated compared with normal pairs and the results of RT-qPCR showed a significant increase in miR-424 expression (p < 0.01). Then, molecular analyzes using Top/Fop Flash and RT-qPCR techniques indicated that miR-424 overexpression leads to increased Wnt pathway activity in the SW480 cell line. In addition, the small molecules IWP-2 and PNU-74654 were used to inhibit the Wnt signaling pathway, and the miR-424 overexpression suggested that exert its effect on the level of β-catenin complex degradation. Then, dual-luciferase assay validated the interaction between miR-424 and APC. Overall, our results suggest miR-424 is a positive regulator of the Wnt signaling pathway, and it could be a possible prognosis for colorectal cancer.
 

Page 1 from 1