Search published articles


Showing 2 results for Naderimanesh

S. Ebrahimi Samani, S.m. Asghari , H. Naderimanesh , S. Hoseinkhani ,
Volume 9, Issue 2 (Spring 2018)
Abstract

Aims: Among different nanosystems, polymeric nanoparticles are highly regarded because of their potential to be used as drug carrier. poly(ethylene glycol)-block-lactide-glycolide (PEG-PLGA) is an amphiphilic copolymer that can be used to carry water-soluble drugs and drugs and molecules insoluble in water. PEG-PLGA polymeric nanoparticles can reduce renal filtration and drug toxicity; they are also biodegradable and biocompatible. The aim of this study was to optimize preparation of PEG-PLGA nanoparticles by solvent evaporation method.
Materials and Methods: In the present experimental study, PEG-PLGA nanoparticles with a diameter of 150nm and a zeta potential of -10 were prepared by solvent evaporation method. Then, the physicochemical properties of nanoparticles were carefully examined.
Findings: By increasing the polymer concentration and the percentage of polyvinyl alcohol, particle size increased. The production of nanoparticles with a concentration of 5mg/ml copolymer, a 2% w/v polyvinyl alcohol concentration, and in a 12:1 volume ratio showed the best size and superficial load. Morphologically, the nanoparticles were structurally similar and spherical. According to the FTIR spectrum, the peak in 2900-13000cm region was in accordance with the tensile bond C-H in CH3. A strong peak in 1760cm-1 was related to the tensile-CO that showed the copolymer formation.
Conclusion: The production of PEG-PLGA nanoparticles in a concentration of 5mg/ml copolymer, 2% w/v of polyvinyl alcohol concentration, and in a 12:1 volume ratio shows the best size and superficial load; also, the nanoparticles are structurally similar and spherical.
 


Volume 12, Issue 2 (Spring 2024)
Abstract

Aims: The purpose of the present study was to investigate the antioxidant and anti-inflammatory properties of glucosamine hydrochloride (G-HCl), glucosamine sulfate sodium chloride (GS-Na) and glucosamine sulfate potassium chloride (GS-K) isolated from the shells of Litopenaeus vannamei obtained from a shrimp processing plant.
Materials &Methods: G-HCl was synthesized via hydrolysis of chitin with concentrated HCl followed by several sequential decolorization, crystallization and washing steps. Using G-HCl as the precursor, addition of sodium and potassium sulfates at 40 ºC for 1 h resulted in production of GS-Na and GS-K.
Findings: The yield of chitin was found 19.9% and those of glucosamine products ranged between 75.5%-82.5%. The HPAEC-PAD indicated the presence of glucosamine monomers, as compared with commercial standard, with different elution time to that of glucose. The appearance of characteristic signals of O-H, N-H and C-O-C in the FT-IR spectra provided further support of glucosamine successful isolation. SEM images and EDX spectra of glucosamines confirmed the elemental compositions of samples and their polyhedral crystalline structures. DSC and TGA thermograms indicated endothermic and exothermic peaks specific to glucosamine products. Relatively low DPPH and ABTS radical scavenging activities and ferric reducing power was obtained for all glucosamine products. all the glucosamine derivatives indicated an anti-inflammatory effect on LPS-simulated RAW264.7 cells.
Conclusion: Glucosamine products showed no cytotoxicity and down-regulated the release of NO in RAW264.7 murine macrophage cells induced by LPS. Overall, the present results indicated the successful production of glucosamine from the waste of L. vannamei processing plant with antioxidant and anti-inflammatory properties.
 

Page 1 from 1