Search published articles
Showing 3 results for Nomani
H. Danafar, A. R. Nomani, M. Sadeghizadeh,
Volume 10, Issue 3 (Summer 2019)
Abstract
Nanotechnology is currently one of the promising approaches for cancer diagnosis and treatment. Among different materials that so far have been used for drug delivery, the systems based on the polymers are more attractive, due to their simple manufacturing processes and diversity in polymer functionalization and modification methods. Polyethyleneglycol (PEG) and polycaprolactone (PCL) are two FDA approved and biocompatible synthetic polymers which frequently have been used in the pharmaceutical industry. Apart from the delivery carriers, the active ingredient’s safety is also very challenging in case of cancer therapeutics. The chemotherapy agent’s side effects are one of the main patients’ death in many cancers. The naturally extracted curcumin is one of the most interesting anti-cancer agents with a proven selective effect on the cancerous cells which results in minimum side effects during the treatment. Curcumin has been tested as the main agent or in combination therapy of various cancers. Numerous studies have shown the safety and efficacy of curcumin at different administered doses. However, the main obstacle in the application of curcumin is its low aqueous solubility and low and variable bioavailability after administration. For that, in this study, we tried to enhance the solubility of curcumin using a novel diblock copolymer of PEG-PCL nanoparticulate system. At first, the PEG-PCL copolymer was synthesized and then characterized by GPC, FTIR, and H NMR methods. After that, curcumin was loaded in the micellar structure of PEG-PCL at an optimized encapsulation approach and then the toxicity of the prepared nanoparticles was assessed in MCF-7 cell culture. The results showed that the prepared nanoparticles could efficiently entrap the hydrophobic molecules of curcumin, improve its solubility and increase in vitro activity against cancer cell line.
Sh. Kianamiri, A. Dinari, A. R. Nomani, M. Sadeghizadeh, M. Mardi, B. Daraei,
Volume 10, Issue 3 (Summer 2019)
Abstract
Antioxidant, anticancer, anti-inflammatory, and anti-microbial activities are evidences for the invaluable benefit of this herbal extract in human health and therapy. The anticancer effect of curcumin is due to the targeting of a wide range of cellular and molecular pathways involved in cancer progression. However, the limited solubility, low bioavailability and rapid metabolism of curcumin have a serious negative impact on its therapeutic application. In this research, a nano-carrier with appropriate delivery features, prepared through the conjugation of curcumin to the surface of a polyamidoamine dendrimer at generation 4 (PAMAM). The structure of the synthesized dendrimeric curcumin was confirmed by FT-IR and 1H-NMR methods. The particles size and zeta potential were measured by Zetasizer. The loading rate of curcumin molecules on nano-carrier investigated and the cell viability, intracellular reactive oxygen species and induction of apoptosis were evaluated using MTT assay and flow cytometry technique in the follows. The results of this study showed that the prepared dendrimeric curcumin had a hydrodynamic diameter of about 100 nm. The results show that the rate of curcumin loading on this nanostructure system was about four curcumin molecules per each dendrimer. Cell experiments indicated that the toxicity, cellular reactive oxygen species (ROS), and apoptosis caused by dendrimeric nano-carrier were higher than free curcumin. Better performance of dendrimer-Nano-carrier was been through the improvement of physicochemical properties and increased curcumin solubility. Overall, it seems that the prepared dendrimeric curcumin is able to significantly improve the delivery of hydrophobic drugs on cancerous cells.
Volume 17, Issue 1 (4-2014)
Abstract
Objective: In recent decades, the anticancer effect of curcumin has been proven by several studies. Curcumin affects multiple cell signaling pathways and prevents cell proliferation, invasion, metastasis and angiogenesis. However, the aqueous solubility of curcumin and its bioavailability are very low which restricts its anticancer properties. In this research, we have synthesized a monomethoxy poly (ethylene glycol)-Oleate (mPEG-OA) di-block copolymer and used a surface PEGylated poly (amidoamine) (PAMAM) dendrimer to improve bioavailability of curcumin in cancer cells. Methods: Thecritical micelle concentration (CMC) of mPEG-OA, drug loading efficiencies, and cytotoxicity in the human glioblastoma cell line (U87MG) of all the prepared nanodevices were thoroughly investigated. Results: Atomic force microscopy (AFM) and dynamic light scattering (DLS) studies have shown that mPEG-OA have two common nanostructures, micelles and polymerosomes. mPEG-OA micelles had a very low CMC (0.03 g/l). The IC50 of free curcumin (0.01 methanol solution) was 48 μM, curcumin-loaded mPEG-OA was 24 μM , and curcumin-loaded PAMAM dendrimer was 13 μM. Moreover, the PEGylated PAMAM was non-cytotoxic. Conclusion: The results indicated that by using these nanocarriers, the bioavailability of curcumin significantly increased compared to free curcumin. Overall, this research revealed that these curcumin nanocarriers could be considered as appropriate drug delivery systems for curcumin delivery in cancer cells.