Search published articles


Showing 3 results for Sariri

S. Shirin Shahangian, Shirin Jalili, Ammar Mohseni, Reza Hassan Sajedi, Sadegh Hasannia, Majid Taghdir, Mohammad Mohammadi, Rayhaneh Sariri,
Volume 5, Issue 1 (11-2014)
Abstract

Regarding the importance of inhibiting VEGF and unique features of VHHs as a new generation of antibody-based therapeutics, the present study aimed to generate VHHs against the receptor binding domain of VEGF, thereby blocking of VEGF binding to its receptor. After preparing the gene repertoire of VHH fragments from an immunized camel, a VHH phage display library was constructed. We adopted a stringent successive biopanning to isolate the phages displaying VHH with high affinity to VEGF-RBD.A significant enrichment of phages that specifically bound to the target protein was obtained after six rounds of panning. Of the specific clones with high binding affinity screened by monoclonal phage ELISA, 52% shared the same VHH sequence, showing its high enrichment. Using molecular simulation of antigen-antibody interaction based on the crystallographic information of VEGF/VEGFR2, molecular dynamics simulations and MM/PBSA free energy calculations, we provide a reliable picture of the binding site of antibody on antigen. The key residues in the VEvhh1-VEGF interface were dissected and the energetics was analyzed by MM/PBSA. The results of studies revealed that VEvhh1 binds to the receptor binding site of VEGF with high binding energy and showed the highest affinity to the residues of VEGF which are responsible for VEGF binding to VEGFR2. Also the antibody potently covers these key functional residues of VEGF, thereby inhibiting VEGF binding to its receptor and probably abrogating its biological activity. This study may represent VEvhh1 as an anti-VEGF and anti-angiogenic candidate.
M. Afsharnezhad , S.s. Shahangian , M. Salehi , R. Sariri,
Volume 10, Issue 4 (Fall 2019)
Abstract

The use of enzymes in organic solvents represents an important area of industrial and biotechnological development. However, organic solvents often cause protein denaturation, thereby reducing the activity and stability of enzymes. Use of stabilizing additives, protein engineering and chemical modification of enzymes are common strategies to overcome this problem. In this study, a cysteine protease from the latex of Ficus johannis was purified and the activity and stability of the protease were investigated in the presence of different organic solvents. The effect of trehalose, sorbitol, and sucrose on the enzyme activity was also studied in the presence of organic solvents. The results showed that the enzyme activity was elevated in the presence of low concentrations of organic solvents increased, while it was decreased with increasing concentration of organic solvents. However, the enzyme still retained 60% of its activity at 30% organic solvent concentration. The enzyme was considerably stable in the presence of organic solvents, maintaining almost 90% of its stability in the presence of 50% of all solvents. As stabilizing additives, sugars enhanced the catalytic activity and stability of the enzyme, and trehalose was the most effective sugar. The easy purification procedure and considerable activity and stability of the protease in the presence of organic solvents could suggest this enzyme as a good candidate for peptide synthesis industry.

Tayyebeh Rahmati Darvazi, Reyhaneh Sariri,
Volume 13, Issue 2 (1-2023)
Abstract

Reactive oxygen species (ROS) at low concentrations effectively regulates intracellular pathways such as gene expression. Whereas their high concentrations are involved in the pathogenesis of many diseases by causing oxidative stress and damaging vital macromolecules. Each cell is equipped with an antioxidant defense system to neutralize high levels of ROS. Peroxidase, as an essential antioxidant enzyme, catalyzes the oxidation of various substrates using hydrogen peroxide which is a reactive oxygen species. Since, the caffeine and theobromine are widely consumed daily in the world, and their concentrations affect the activity of many enzymes. Therefore, in the present study, the inhibitory effect of these methylxanthines on peroxidase activity has been examined. The peroxidase activity is measured by a spectrophotometer at 510 nm for 3 minutes with following absorption due to the oxidation of 4-aminoantipyrine in the presence and absence of caffeine and theobromine. In this study, it was observed that both compounds had an inhibitory effect on peroxidase activity. The values of IC50 for theobromine and caffeine were obtained as 0.5 and 0.6 mmol, respectively. Moreover, the values of Km and Vmax showed that both inhibitors acted by an un-competitive mechanism of inhibition. Also, Ki values for theobromine and caffeine were calculated 0.03 and 0.08 mM, respectively. The values of Ki and IC50 for theobromine was lower than those of caffeine indicating that theobromine has a higher inhibition strength and binding affinity to the enzyme-substrate complex. Therefore, it can be concluded that theobromine has a stronger inhibitory effect on peroxidase activity.

Page 1 from 1