Showing 5 results for Tohidi Moghadam
S. Mohebbi , M. Behmanesh , M. Nikkhah , T. Tohidi Moghadam ,
Volume 9, Issue 1 (Winter 2018)
Abstract
Aims: HIF-1 transcription factor is a key determinant of oxygen-dependent gene regulation, which its role has been demonstrated for the survival and progress of cancer tumors. The effect of suppression of HIF-1α on the evaluation of HIF-1 dependent processes and interference with pathophysiological events caused by hypoxia is important. The aim of this study was the apoptosis induction in glioma cells by downregulation of Hif-1α gene.
Materials and Methods: In this experimental study, a specific siRNA against the HIF1α gene was developed using OligoWalk and Mit (siRNA.wi.mit.edu) servers and the online design department of Invivogene and Qiagene companies and the efficacy of its silencing in the U87 glioma cell line was quantitatively investigated by the Real-time PCR technique. In order to find out the effect of reduction of expression in the process of cell cycle and apoptosis, staining with PI and Annexin-PI was performed and the number of cells in each phase and the rate of cell mortality with control were compared by flow cytometry.
Findings: The designed HIF-1a-siRNA was able to reduce HIF1α expression by 40%. The treatment of U87 cells after 24 hours increased the cells by 6% and after 48 hours, increased them by 12% in the sub G1 stage. Confirming the cell cycle changes, 48-hour treatment induced apoptosis in 58% of cells; regarding the 1.5% rate of apoptosis in the control cells, this cell death rate was very significant and showed the ability of the designed siRNA to induce apoptosis.
Conclusion: The apoptosis induction of specific siRNA designed against HIF1α gene has a significant effect on the reduction of HIF-1α gene expression, cell growth, and apoptosis.
S. Mohseni , Kh. Khajeh, T. Tohidi Moghadam, B. Dabirmanesh, M. Haddadi,
Volume 9, Issue 3 (Summer 2018)
Abstract
Aims: Matrix Metalloproteinase 9 (MMP-9) plays an important role in the development of many diseases such as periodontitis, atherosclerosis, and cancer. One of the methods for stability of enzyme is using deep eutectic solvents (DESs). The aim of this study was to investigate the effect of deep eutectic solvent on stability and structure of Matrix Metalloproteinase 9 with therapeutic purpose.
Materials and Methods: Herein, active full length recombinant human MMP-9 (amino acid residues 107-707) was expressed in Escherichia coli BL21, using the vector pET21a, and purification and refolding were conducted, using urea gradient method on Ni-NTA column, simultaneously. The effect of DES based on choline chloride and glycerol with a 1:1 mol ratio was investigated on activity, stability, and structure of MMP-9. The enzyme activity at different concentrations of gelatin in the presence of 15% and 30% volume/volume DESs at pH 7.8 was investigated for obtaining Vmax and km by Michaelis-Menten kinetics, using the Prism 5.0 software.
Findings: With an increase in the percentage of solvents up to 30%, the specific activity of enzyme increased, followed by a decreasing trend, and in the presence of a 30% volume/volume solvent at a temperature of 50°C and 60°C, compared with a 15% solvent and no solvent, contained more residue activity. The results showed more solubility of enzyme in 30% solvent.
Conclusion: MMp-9 has the highest activity in presence of 30% volume/volume DES based on choline chloride and glycerol. Increase in thermal stability of MMp-9 can be attributed to compactness of structure in the presence of DES.
S. Zaghian, T. Tohidi Moghadam, M. Behmanesh,
Volume 10, Issue 3 (Summer 2019)
Abstract
The unique physicochemical properties of nanoscale plasmonic materials have attracted considerable attention in the fabrication of hybrid nano-bio structures because of their promising applications in biosensing, imaging, and controlled-release drug delivery. The purpose of this study was the synthesis of functionalized gold nanorods (GNRs) to both reduce the toxicity and increase the biocompatibility for further applications such as the design of a therapeutic nanocarrier for nucleic acid delivery to cancerous cells. In this study, GNRs were prepared by seed-mediated method and their surface was modified by polystyrene sulfonate (PSS) polymer. Then, peptide-functionalized GNRs was fabricated via ligand exchange method through the Au-S bond. The CTAB-GNRs and functionalized nanostructures were characterized using ultraviolet-visible spectrophotometry, transmission electron microscopy (TEM), and zeta potential measurement. Finally, the cytotoxicity effects of functionalized GNRs on Hela cells were studied by MTT assay. The optimal concentration of PSS and peptide, which did not cause any aggregation and morphological perturbations of the nanostructure were obtained 50μM and 1mM respectively. The survival percentage of treated Hela cells significantly increased by surface modification of GNRs with PSS and functionalization with peptide compared to CTAB-GNRs. While LC50 of functionalized GNRs was calculated 50nM, treated cells with the same concentrations of CTABGNRs survived less than 20%. Functionalization of GNRs increases its biocompatibility and improves applications of this nanostructure as a therapeutic carrier in cancerous cells.
S.s. Mirjalili, T. Tohidi Moghadam, R. Hassan Sajedi ,
Volume 10, Issue 4 (Fall 2019)
Abstract
Recent researches on the application of nanoparticles have been focused on nanostructures of gold with rod morphology, due to having outstanding optical properties for diagnostics and therapeutics of the diseases. The rod morphology of the nanostructures enables strong and sensitive absorption of surface plasmon in the infrared region. In the present research, based on the sensitivity of surface plasmon resonance of gold nanorods to trace changes in the local environment, as well as the importance of rapid detection of trace amounts of albumin in urine, functionalization, and stability of these nanostructures with anti-albumin antibody has been investigated in different concentrations, volumes, time and pH changes. The results of spectroscopic studies of different samples in the visible spectrum near-infrared waves showed that gold nanorods have desirable stability, and their rod morphology characteristic is maintained. The study of the temporal stability of samples showed that the complex samples were stable up to 48 hours for sensing applications. Primary monitoring of the function of the nanobiosensor in the presence of albumin with two normal and abnormal levels of concentration revealed remarkable changes in interparticle distance, size, and morphology of the nanostructures. According to this research, the rod nanostructures can be used to design simple nanobiosensors.
Fezzeh Amani, Tahereh Tohidi Moghadam, Zeinab Bagheri, Nasrin Farahani, Bijan Ranjbar,
Volume 11, Issue 2 (Spring 2020)
Abstract
Aptamers, DNA or RNA single-stranded sequences, have different applications in biological investigations, such as apatsensors, due to their many advantages including high specificity and affinity, cost-effectiveness and easy synthesis. In this study, an aptasensor was designed based on the changes in the SPR spectra of gold nanoparticle, in order to detect carcinoembryonic antigen (CEA) cancer indicator as a marker for breast cancer. In the presence of aptamer, gold nanoparticles were stable, SPR spectrum of gold nanoparticle was unchanged after adding NaCl. However, in the presence of CEA as a cancer marker, aptamer binds to the target molecule and by adding NaCl consequently the SPR spectrum of gold nanoparticles is changed. The results of this study showed that the designed aptasensor enables the detection of CEA over a range of 50 ng ml-1. The limit of detection was about 22.75 ng ml-1. It seems this aptasensor can be used in detection of carcinoembryonic antigen cancer marker.