Search published articles


Showing 6 results for Totonchi


Volume 2, Issue 1 (3-1991)
Abstract

-
M. Azimi, M. Rahimi, M. Ebrahimi, M. Totonchi,
Volume 10, Issue 2 (Spring 2019)
Abstract

Cancer stem cells are responsible for the formation the resistance to treatment, tumor relapse, and metastasis. miRNAs play an important role in the regulation of biological processes. Therefore, the purpose of this review is to candidate miRNAs that are involved in the regulation of all three properties including stemness, metastasis, and drug resistance and find their target genes and signaling pathways by using literature learning and data mining. The present systematic review is done to identify stemness-regulating miRNAs. By using CORMINE database, metastasis and drug resistance regulating miRNAs collected. Finally, we compared these three lists of miRNAs and found common miRNAs in these three properties. ONCO.IO database and KEGG pathway have been done to obtain the interaction between miRNA-miRNA target and cancer-related signaling pathway respectively. We collected 191 stemness-regulating miRNAs from 21 excluded studies. Based on CORMINE database, 161 miRNAs and 57 miRNAs had metastasis and stemness features respectively. We obtained 7 common miRNAs that 4 of them including has-miR-34a, has-miR-23a, has-miR-30a, has-miR-100 has a significant role for targeting signaling pathways involved in cancer and their most important targets regulate many processes of cells. These data suggest that three important properties can regulate by common miRNAs. Therefore, target these miRNAs or their targets can be helpful to stop tumor growth and metastasis and may be useful biomarkers for early detection of gastric cancer.
F. Shariari, Sh. Moradi, M. Totonchi, L. Satarian, S.j. Mowla, H. Baharvand,
Volume 10, Issue 3 (Summer 2019)
Abstract

Aims: The retinal pigment epithelium cells (RPE) have crucial roles in the health and functionality of retina. Any damage or dysfunction of these cells can lead to severe retinopathies. Identification of signaling pathways and biological processes involved in RPE differentiation can be useful in devising more robust therapeutic approaches.
Materials and Methods: In the present study, we used the intersection of three online prediction databases and their ::union:: with one experimental database to select microRNAs gene targets. Next, by the intersect of the targeted genes with an increase in their expression in epithelial to mesenchymal transition (EMT) of RPE cells, we tried to build a microRNA-mRNA integrative network. Further, several pathway analyses tools were used to perform a more accurate and comprehensive analysis of the signaling pathways and biological processes being regulated by selected miRs in the EMT of the RPE cells.
Findings: Our study revealed that among the 3406 genes being upregulated over the course of EMT in RPE cells, adj p-value≤0.05, fold change≥1.5, 93 genes were miR-204-5p and miR 211-5p target genes. Further analysis of the obtained target gene list demonstrated that these two microRNAs are mostly involved in maintaining RPE cells from going through EMT via regulation of cell adhesion and secretion subnetworks and also MAPK and TGF-β1 signaling pathways while preserving cells from apoptosis and neuronal fates.
Conclusion: This study indicated that miR-204-5p and miR 211-5p are involved in protecting RPE cells from EMT and reinforce their epithelial cell identity.


Volume 13, Issue 58 (0-0)
Abstract

Chemical modification of starch is of the prevalent used methods in order to improve its physicochemical attributes. In this study phosphorylated and hydroxypropylated wheat starches were produced with 0.096 and 2.106% degree of substitution, respectively; and then some of their physicochemical and rheological attributes were studied. The implemented chemical changes due to hydroxypropylation and phosphorylation on native wheat starch were exhibited by FT-IR. X-ray diffraction (XRD) results showed that the native and phosphorylated wheat starches had the most and least amount of crystallinity with 17.34 and 16.14%, respectively. The influence of temperature on swelling power revealed that the native (Ea=46.111) and hydroxypropylated (Ea=26.603) wheat starches had the most and least thermal sensitivity, respectively. Besides, in the case of solubility index, it was observed that native (Ea=77.674) and phosphorylated (Ea=44.478) starches had the most and least thermal sensitivity, in the order given.  The high value of determination coefficient (0.895-0.979) attained from the modeling results of the solubility changes with temperature using two power law equations, demonstrated the high capability of these models in prediction. It was seen that hydroxypropylation and phosphorylation of wheat starch resulted in 2.65 times increase and 17.58 times decrease in paste clarity compared to native starch (p<0.05), respectively. Among the used rheological models, the Herschel-Bulkley model was found to be more suitable to predict the flow characteristics of the starch samples.

Volume 17, Issue 2 (6-2014)
Abstract

The majority of cancer treatments are invasive. Gonadal injuries cause reductions in fertility which results in lack of hope for conception in cancer patients and frustration for their partners. Fortunately, current advancements in cryopreservation and transplantation sciences regarding fertility preservation lead to cryostorage of gonads and preservation prior to the onset of chemo- and radiotherapy treatments. Accordingly in women, the main goal of ovarian cryopreservation is establishment of fertility and hormonal cycle restoration after auto-transplantation. Although the history of ovarian transplantation dates back to the 19th century, there are reports of live human births following ovarian tissue cryopreservation and transplantation since the past 100 years. Despite this success and additional research in the field of ovarian cryopreservation and transplantation, numerous questions remain unanswered. Among these questions, growth factors and hormonal changes because of their effects on follicular function appear to be more important during ovarian tissue transplantation. This review attempts to address hormones and growth factor functions with the specifics of ovarian cryopreservation and auto-transplantation.

Volume 23, Issue 4 (10-2023)
Abstract

Construction of buildings using non-industrial traditional systems have lots of shortcoming in both quality and quantity. During recent years considerable needs to increase the efficiency in building sector has indicated the fact that using old building construction systems is not responsive to community needs and using superior technology in this field is quite inevitable. Constructing building systems with potential, for industrial and prefabricated production, can meet the quantitative and qualitative needs of the construction industry.
  In this paper, the structural behavior of precast concrete sandwich panels (PCSPs) to feasibility of their usage as slab elements in the construction industry is experimental (EXP) ­and numerical analyses studied. These panels consist of three layers: 1) a regular reinforced concrete layer as the upper face, 2) a thick lightweight concrete (LC) layer as the core, and 3) a normal concrete and tension-resistant reinforced lightweight concrete layer as the bottom face. These layers are joined via a rebar network with truss-shaped shear connectors. The structural behavior of precast concrete sandwich panels under flexure is studied. For this purpose, First, laboratory samples were made and tested for bending. Subsequently, a finite element analysis (FEA)­was performed on a sandwich panel model with the specifications and mechanical properties similar to the EXP model in the ABAQUS software. Comparing the results of the experimental and numerical studies revealed a good level of accuracy.  The effect and orientation of the shear connectors in one or two directions were also investigated. The results of experimental and numerical investigation, show a logical behaviour of load-deflection curves According to the results, the PCSPs with two concrete layers had a smaller stiffness and load capacity than those with three concrete layers, When the prefabricated sandwich panels behave as one-way slabs, placing shear connectors parallel to the x-axis (larger dimension) is sufficient to bond two concrete layers for them to act as a single unit, , and­ the ultimate strength and the composite action of desired were found to depend to a large extent upon the stiffness of the shear connector used. This sandwich panel system can constitute an effective step toward lightening regarding its high bearing capacity and ductility, industrial manufacturing capability, prefabricated nature, multi-layer nature, high quality, lightweight, high construction speed, and reduced costs. Hence, the precast concrete sandwich panels slabs with high-strength faces and LC cores can be a suitable replacement for regular slab systems in buildings Based on the economic and weight comparisons under the code dead and live loads, the proposed prefabricated sandwich composite slab system is approximately 20 percent lighter than the regular slab. Due to possibility of industrial production of precast sandwich panels under standard conditions and simplicity of construction, the introduced novel panels system can be a viable alternative for common floor systems. Besides, the novel system can save amount of material, labor, time, and cost in building construction. ­ This research aims to investigate the composite performance and influential parameters in bearing capacity and improve and develop hybrid concrete sandwich panels for structural purposes to lighten and industrialize construction, a topic of interest in structural engineering.

Page 1 from 1