Mehrdad Ebrahimzadeh Kouchesfahani, Ali Bahrami, Valiollah babaeipour,
Volume 13, Issue 2 (1-2023)
Abstract
Poly-γ-glutamic acid (γ-PGA) is a beneficial, biocompatible, and biodegradable biopolymer. These properties have been led to the development of the use of this compound in various industries such as bio-medicine, biopharmaceutical, biotechnology, and tissue engineering. The limitation of the industrial development of γ-PGA is the high cost of its production. To reduce γ-PGA production costs, various strategies are used, such as culture medium optimization using inexpensive compounds, the development of efficient cultivation processes of batch and fed-batch. In this research, first, an efficient batch culture medium was developed to produce γ-PGA of
Bacillus licheniformis ATCC 9945
a. Then, the γ-PGA production increased by the pulsed feeding method and its optimization. By optimal culture medium development, the production of this product in batch culture was increased from 11 g/L to 47 g/L. Then, using the optimized pulsed feeding strategy of citrate (γ-PGA precursor), γ-PGA production was increased to 59.5 g/L, which is one of the highest production values reported with this strain. To optimize two-pulse feeding, the effect of feeding times, stock citrate solution concentration, and time of calcium and manganese solutions addition on γ-PGA production were investigated and optimized. Finally, FTIR confirmed the chemical structure of poly gamma glutamic acid, and the study of γ-PGA morphological properties with SEM showed a nanostructure ideal for biological applications.
Seyedeh Hajar Hassani, Hassan Firoozi Bereshneh, Valiollah babaeipour,
Volume 14, Issue 1 (FALL 2023)
Abstract
In this study, the wheat germ was fermented with industrial bakery yeast powder to produce FWGE with high 2,6-DMBQ content in a Bench-scale bioreactor by scale-up approach. The 2,6-DMBQ content of FWGE was increased by optimizing the three initial variables of pH, fermentation temperature, and agitation rate at two levels using the Taguchi method. The 2,6-DMBQ content of the samples was determined at 14, 16, and 18 hours of the fermentation process. Then, the results were analyzed by Qualitek software. The effect of centrifugation speed on turbidity and the yeast's number in the final supernatant was then investigated. Finally, the supernatant was dried by spray dryer with an inlet temperature of 120 °C and outlet temperature of 70°C, and the amount of active 2,6-DMBQ, pH, moisture, and ash was determined. Under optimal conditions: initial pH of 6, fermentation temperature of 32 °C, and agitation rate of 80 rpm, maximum 1.527 mg of 2,6-DMBQ per gram of FWGE obtained. The separation results showed that the centrifugation rate doesn't have a significant effect on the final turbidity and the number of yeasts left, and thus 3000 g was selected as the optimal speed. However, because of the high content of yeast in the supernatant, filtration was required after centrifugation. Due to the high speed of sample drying, the low moisture of the final product, and high efficiency on an industrial scale, the samples were dried using a spray dryer. Finally, the moisture, protein, ash, and pH of the final product were measured.