Search published articles
Showing 1 results for khavari nejad
Faezeh Khatami, Farzaneh Najafi, Fataneh Yari, Ramazan Ali khavari nejad,
Volume 10, Issue 4 (Fall 2019)
Abstract
The high quality and quantity of extracted DNA is necessary for a variety of molecular biology studies. Low yields and poor quality of genomic DNA extracted from petal due to high levels of secondary metabolites. Carotenoids, anthocyanins, phenolic acids and flavonoids are the most effective secondary metabolites in petals, which are considered as contaminating compounds and could lead to interfere with DNA during extraction and purification. Considering that the basis of the most molecular research in genetic engineering and genomics is high-quality of DNA, therefore, it seems that finding an efficient method for reducing adverse effects of these contaminating compounds for the exteraction is essential. In this regard, iron-magnetic nanoparticles have been used to improve the exteraction of high yields and quality of DNA from rose petals in the present work. In the following, to compare the efficiency of DNA extraction, modified CTAB (Cetyl Trimethyl Ammonium Bromide) and rapid detection methods were used. The results showed that petal’s extracted DNA quantification and qualification by iron-magnetic nanoparticles procedure was much more reliable than two other methods. Inaddition, this method could extract optimal amount of DNA with the lowest amounts of samples within few minutes. Due to high qualification and quantification of DNA purification by iron-magnetic nanoparticles, the present procedure could be recommended as an efficient protocol for rose petal DNA extraction.