Search published articles
Showing 2 results for zare karizi
Shadi Mosadegh, Hamid Abtahi, Jafar Amani, Shohreh zare karizi, A.h. Salmanian,
Volume 13, Issue 4 (1-2023)
Abstract
Background: Shigella and Enterohemorrhagic Escherichia coli are among the most common causes of bacterial diarrhea, and no effective vaccine candidate for these bacteria have approved yet. Due to the role of IpaD protein and Shigella enterotoxin B subunit (StxB) in Shigella and E. coli O157: H7 pathogenicity, STX1B-IpaD chimeric protein can be used as a suitable molecule to produce a recombinant vaccine candidate. This study aimed to clone, express, and purify STX1B-IpaD chimeric protein to develop an effective vaccine candidate against Shigella and E. coli O157: H7 species. Materials and Methods: IpaD gene with NdeI and BamHI restriction enzyme sites was isolated from a recombinant vector and subcloned into the pET28a -STX1B expression vector. Vector was transferred to E.coli strain Rosetta (DE3) and confirmed by PCR and restriction enzyme digestion. SDS-PAGE and western blotting were used to confirm the recombinant protein. The recombinant STX1B-IpaD protein was purified by affinity chromatography, and its concentration was measured by the Bradford method. Results: The PCR and restriction enzyme digestion showed the accuracy of the gene cloning. The protein electrophoresis showed the proper expression and correct molecular weight (27 kDa) of STX1B-IpaD. The western blot analysis confirmed the recombinant protein. The recombinant protein concentration was estimated at more than 0.3 gr/L. Conclusion: An effective method for the production of recombinant proteins is codon optimization and effective expression in heterologous hosts. After the immunogenicity in the animal model, this recombinant protein can be used as a chimeric vaccine candidate against EHEC and Shigella bacteria.
Somayeh Heidarian, Laya Takbiri, Shore zare karizi, Jafar Amani, Sedighe Arbabian,
Volume 15, Issue 2 (5-2024)
Abstract
APC gene in ctDNA has been proposed as a potential biomarker for cancer diagnosis. A biosensor based on a multi-walled carbon nanotube (MWCNT) and DNA probe with fluorophore FAM (6-carboxyfluorescein) for detection of APC gene in ctDNA was developed to identify patients with colorectal cancer (CRC).
This method was designed based on the adsorption and immobilization of FAM-labeled single-stranded DNA (ssDNA) on MWCNT, which leads to the quenching of FAM fluorescence emission. By adding its cDNA could release single-stranded DNA probe (ssDNA) from the MWCNT surface and a double-stranded DNA (dsDNA) was formed. It led to the return of FAM fluorescence emission. While in the case of non-complementary DNA the corresponding dsDNA was not formed and therefore we did not have the return of FAM fluorescence emission. The results of this study showed that the biosensor based on carbon nanotubes can be used as a high-sensitivity method for the early detection of CRC.