Search published articles
Showing 1 results for retinal Detachment
F. Babapoura , F. Yazdian , F. Tabandeh ,
Volume 9, Issue 1 (1-2018)
Abstract
Aims: Age-Related Macular Degeneration (AMD) is one of the biggest causes of vision loss after 50 years of age in the world. AMD disease destroys the retinal pigment cells. Retinal tissue engineering provides a suitable environment for the growth of retinal pigment epithelium cells using different scaffolds. These scaffolds may cause interior pressure changes in eyes and thus, causes disease of the separation of pigment and retinal epithelial cells. Therefore, the purpose of this study was to simulate gelatin, gelatin-chitosan and poly-caprolactone scaffolds in the retina and compare the pressure gradient and the effect of thickness on the pressure gradient.
Materials & Methods: In the present experimental study, in the first stage, three gelatin, gelatin-chitosan and poly-caprolactone scaffolds were simulated to examine the average scaffold pressure using COMSOL 5.1.1 software and Darcy law. In the next step, a gelatin-chitosan scaffold with thicknesses of 10 and 20 micron was simulated with Darcy law, to examine the effect of thickness on average pressure.
Findings: The output pressure of the gelatin scaffold was calculated as 308.800Pa Which was less than the pressure level of the caroid layer And it was less than the output pressure of other scaffolds. The average pressure of gelatin-chitosan scaffold with thicknesses of 10 and 20 micron was 1997.31 and 2003.13 respectively in the last step.
Conclusion: The gelatin scaffold produces a moderate lower pressure than the gelatin-chitosan scaffold and poly-caprolactone in the retina and it is more suitable than other scaffolds. In the simulation of gelatin-chitosan scaffold, increasing the thickness causes increased pressure and retinal impairment.