Search published articles


Showing 2 results for Nanopesticide

Fereshteh Alizadeh, Sara Daneshjou,
Volume 15, Issue 2 (5-2024)
Abstract

Ensuring food security in developing countries is highly challenging due to low productivity of the agriculture sector, degradation of natural resources, crop losses, less value addition, and high population growth. therefore, researchers are striving to adopt newer technologies to increase the supply of agricultural products. one of these technologies is nanotechnology. Nanotechnology is the science of producing, manufacturing and using materials at the atomic and molecular levels and it can transform various industries, including the agricultural industry, with the help of new tools. Nanotechnology By using new materials such as nanofertilizers, nanoherbicides, nanopesticides, etc., strengthens the soil and increases the growth of plants and with the help of new tools such as nano-sensors and intelligent delivery systems, identifies pathogenes in plants.  For these reasons nanotechnology can be a promising way to increase the productivity of agricultural products.­­­

Volume 25, Issue 2 (2-2023)
Abstract

Currently, nanotechnologies are being actively introduced into agriculture, in particular in the field of creating new effective plant protection products. This is achieved through the development of nanosized controlled release systems, such as polymer nanoparticles, micelles, and so on using a wide variety of materials. In the present study, we applied original approach based on “green” mechanochemical technology to prepare new nanocomposites of pesticide Tebuconazole (TBC) for treating wheat seeds against pathogenic microflora (B. sorokiniana, Fusarium spp., Alternaria spp., Penicillum spp.). The size distribution of nanoparticles for three TBC formulations (microcapsules, microemulsionsб nanosuspensions) was measured using dynamic light scattering technique. All formulations contained nanoparticles (10-300 nm) and we aimed to find the most suitable size for effective penetration into cell membranes. The narrowest size distribution (225±40 nm) was observed for nanosuspension based on Licorice Extract (LE). The microcapsules based on Na-CMC also contained micro-sized particles (1,500 nm), which are apparently aggregates of nanoparticles. The laboratory and field biological tests revealed a high activity of the developed formulations against all pathogenic microflora under study, with a low retardant effect. Nanosuspension is considered as the most “environmentally friendly preparation”, since it contains only natural LE as an adjunct. This formulation with a consumption rate of 0.25 Lt-1 suppressed 100% B. sorokiniana, Fusarium spp. and Penicillum spp. infections, possibly due to the presence of natural saponin glycyrrhizic acid, which interacts with plant membranes and promotes better penetration of TBC into the grain.

Page 1 from 1