Search published articles
Showing 3 results for Osteogenesis
Zahra Shahsaman, Sadegh Hasannia,
Volume 12, Issue 4 (12-2021)
Abstract
Bone morphogenetic proteins (BMPs) are a subfamily of multifunctional superfamily transforming growth factor-beta (TGF-β), thus they have a lot of similarity in biosynthesis, structure, signaling and biological function with other members of the superfamily. They are involved in growth and differentiation of embryo to maintenance of adult cells. Among this family member, BMP-2 is a valuable protein that acts in different processes such as spinal fusions, articular cartilage damage therapy, tumor inhibition, gingivitis and dental treatment. The high importance of this protein and its low production rate in body caused several researches in the field of producing recombinant BMP-2 in different hosts. Recombinant production of the protein in bacterial host caused the decrease in production costs and therefore led to the common use of BMP-2 in treatment of various diseases. To date, positive effects of intact BMP-2 and its derivative peptides, in order to osteoinduction in fracture treatment and jaw bone regeneration for dental implantation, were considerable. Considering high clinical significance of BMP-2, there is a necessity for more investigations in relation to this protein.
Volume 22, Issue 3 (7-2019)
Abstract
Aims: Using osteoinductive agents in combination with tissue engineering scaffolds is considered as a new approach to bone repair. Recently, statins have attracted great attention among a variety of drugs used in bone repair. In order to achieve a sustained release of Atorvastatin from bone scaffolds, two systems, including nanoniosomes and gelatin microspheres, were synthesized and compared.
Materials and Methods: Nanoniosomes and gelatin microspheres were prepared by thin-film hydration and single emulsion technique, respectively.
Findings: The prepared systems were characterized for morphology, size, carriers’ preparation efficiency, encapsulation efficiency, and drug loading. Also, release profiles of them were evaluated over a period of one week. The results indicated the formation of relatively spherical niosomes with the diameter of about 653.52nm and encapsulation efficiency of 81.34%, and formation of gelatin microspheres with the diameter of about 37.5μm and the encapsulation efficiency of 78.93%.
Conclusion: The results showed that gelatin microspheres had a lower burst release than niosomes, and niosomes had more sustained release than gelatin microspheres after 24hr to 1 week. Albeit, selection of the optimal system requires cellular studies and also the selection must occur according to the severity of the damage and the rate of repair.
Volume 22, Issue 3 (7-2019)
Abstract
Aims: Growing experiments show that biomaterials that have a bioactive glass (BG) indicate encouraging effects on bone tissue repair. Strontium-substituted BGs (BG/Sr) have been confirmed to improve bone formation while preventing bone resorption by osteoclasts.
Materials and Methods: This study aimed to evaluate the potential of strontium substitution on bioglass/gelatin (Gel) osteogenesis in critically sized rabbit calvarial defects. Defects were treated with Gel-BG or Gel-BG/Sr scaffolds and one defect was left unfilled as a control. Bone regeneration and mineralization process were evaluated by hematoxylin and eosin, Masson’s trichrome and Alizarin Red staining after 4 and 8 weeks post-implantation.
Findings: Based on the histological findings, newly formed bone area in scaffolds containing BG/Sr was greater than that without Sr after 8 weeks.
Conclusion: Our results specified that BG/Sr containing scaffolds could better increase bone regeneration than those without Sr and could be considered as a bone graft in bone tissue engineering.