Showing 4 results for Polyaniline
Volume 2, Issue 2 (9-2018)
Abstract
In this study, the effects of drying temperature and mechanical pressure on the surface structure and dynamical properties of polyaniline (PAni) were studied. PAni was synthesized through the aniline polymerization process in the presence of ammonium persulfate in acidic medium and normal methyl-2-pyrrolidine solution. The obtained solution was dipped on a substrate of quartz glass. Atomic force microscopy (AFM) analysis based on nano-indentation tests were used to determine the values of hardness, Young’s modulus and Poisson’s ratio of the films. The results of the analysis of the scanning electron microscope demonstrated that the surface morphology of the film is changed from a fiber-to-interconnected cross-linked networkby increasing the drying temperature. The transmission electron microscope analysis showed that the diameter of the fibers on the surfaces dried at 318 K and 418 K was 18 and 30 nm, respectively. AFM results showed that the mean surface roughness of PAni film at 318 K without mechanical pressure was 63 nm, while for the film pressed at 5 MPa was less than 35 nm. Thermo-mechanical analysis showed that the glass transition temperature of the PAni film prepared without mechanical pressure and the film pressed at 5 MPa were 386 K and 378 K, respectively. Investigating the temperature dependence and applied pressure on the film surface in determining the viscoelastic properties of the PAni nanostructured film can provide readers with appropriate information about the storage and loss modulus of the film and the activation energy of the polymer layer during the thermal decomposition process.
Volume 5, Issue 3 (12-2021)
Abstract
Research subject: Solar cells has gained a great attention as a green, renewable and cheap energy resources. To overcome the challenging technical problems and improve their competitiveness with silicone solar cells, the design, synthesis and development of new materials with engineered band gap energies has found an undeniable importance.
Research approach: Herein, the synthesis of a polymer with donor-acceptor structure based on polyaniline grafted to ZnO nanoparticles at one end and naphthalene moiety at the other end of chains, and investigation of their chemical structure, composition, morphology, optical and electrochemical properties is reported. The chemical structure of the materials were analyzed by FT-IR and 1H NMR spectroscopy. The organic and inorganic contents of materials were determined by thermal gravimetric analysis (TGA) and atomic absorption spectroscopy (AAS) techniques. The morphology and size of nanoparticles were observed by scanning electron microscopy (SEM). The optical and electrical band gap energy of the samples were measured by ultraviolet visible-diffuse reflectance (UV-Vis-DRS) spectroscopy and cyclic voltammetry (CV) diagrams.
Main results: The chemical structure of designed materials has been successfully confirmed by the results of FT-IR and 1H NMR spectra. TGA and AAS analysis have indicated that the synthesized final material has contained about 10% of ZnO and 90% of organic parts including toluene-2,4-diisocyanate, 2,4-diaminotoluene, polyaniline and naphthalene groups. An almost highly uniform spherical nanoparticles with sizes about 70 nm has been observed by SEM images. UV-Vis-DRS spectroscopy and CV diagrams have revealed that by grafting ZnO nanoparticles and naphthalene moiety to the polyaniline chain ends, the optical and electrical band gap energy of the sample were lowered to 1.19 and 0.95 eV, respectively. It was concluded that the grafted groups to chain ends has increased the length of conjugated system, lowering the energy level of lowest unoccupied molecular orbital (LUMO) and increasing the energy level of highest occupied molecular orbital (HOMO). Detailed analysis of CV diagrams has indicated that the effect in lowering of LUMO has been a bit more pronounced than the increasing of HOMO energy level.
A.r. Khoshkbar Sadeghi, M. Farbodi ,
Volume 9, Issue 4 (12-2018)
Abstract
Aims: The simultaneous use of insulating polymers and nanostructures such as silver to produce triangular nanocomposites, with the reinforcement of effect of each other, can have better results in improving the mechanical properties and processability of polyaniline. The current study was conducted with the aim of preparation of Polyaniline/Polyvinyl Alcohol/Ag nanocomposite and characterization of its physicochemical and antibacterial properties.
Materials and Methods: In the present experimental research, polyaniline (PANI) was used as a conducting polymer, polyvinyl alcohol (PVA) was used as a biopolymer because of its biodegradable property. Ag nanoparticles also was considered as a reinforcing agent of thermal stability, mechanical and antibacterial property to prepare PANI-PVA-Ag nanocomposite.
The synthesis of PANI-PVA composite and PANI-PVA-Ag nanocomposite was performed through polyaniline and Ag addition in PVA solution. Different weight percent of components and Fourier-Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and scanning electron microscope connected to the X-ray Diffraction System (EDX) were used to investigate the properties.
Findings: Thermal stability of the nanocomposite in comparison with pure PVA in temperatures above 400ᵒC was promoted. The presence of PANI, PVA, and Ag in the FTIR spectroscopy showed the compatibility of the nanocomposite components. The greatest tensile strength belonged to PANI/PVA/Ag nanocomposites with 88%, 9%, and 3%w/w.
Conclusion: The components of Polyaniline/Polyvinyl Alcohol/Ag are compatible. The presence of PANI and Ag nanoparticles in the structure of the nanocomposite improves its thermal stability than pure PVA at high temperatures. Polyaniline/Polyvinyl Alcohol/Ag canocomposite has inhibitory effect on gram-positive and gram-negative pathogenic bacteria. Reducing the weight percent of PVA or increasing the weight percent of PANI decrease the tensile strength.
Volume 19, Issue 123 (5-2022)
Abstract
Due to the fact that the use of biodegradable films helps to protect the environment, in this study, the physical, mechanical, antioxidant and thermal properties of polylactic acid films containing polypyrrole, polyaniline and copper oxide were investigated. The results showed that due to the addition of oxidant nanoparticles, the thickness of the films increased and their water vapor permeability decreased significantly. The solubility of the films also decreased significantly with increasing the amount of copper oxide nanoparticles. The resulting films showed less flexibility due to the addition of polyaniline and polypyrrole, while their resistance to failure showed a relative increase. Antioxidant activity of polylactic acid films containing polypyrrole / CuO and polyaniline / CuO showed a significant increase compared to pure polylactic acid (p<0.05). Pure polylactic acid film did not show any electrical conductivity, If the addition of polypyrrole and polyaniline increased the electrical conductivity of the films, the copper oxide nanoparticles also had no significant effect on the electrical conductivity. These films can be used as biosensors in food packaging due to their conductivity and suitable thermal, mechanical and water vapor permeability properties.