Search published articles
Showing 2 results for Caspase 9
Roghaye Hamidi, Farangis Ataei, Saman Hosseinkhani,
Volume 13, Issue 3 (1-2023)
Abstract
Aims: Programmed cell death is a vital cellular process that is highly conserved in evolution. Apoptosis, as a common mode of programmed cell death, is disturbed in the most human malignancies and leads the resistance of cancers to current treatment strategies. Caspase 9 is a key protein in mitochondrial apoptosis. Activated Caspase 9 leads to activation of Caspase 3/7, initiating a caspase cascade and killing cell. In this study, Caspase 9 gene was cloned into pcDNA3.1(+) and its expression and function evaluated in cell.
Methods: PCR amplification of Caspase 9 was performed by specific primers and ligated into pcDNA3.1(+) after double-digestion with KpnI and BamHI. After sequencing, pcDNA/Caspase 9 was transfected into SH-SY5Y cells and treated with doxorubicin. Caspase 9 function was determined by its effect on cell death level by trypan blue and PI staining, and Caspase 3 activity, and its expression in cells measured by western blotting.
Finding: Caspase 9 gene cloning was done and its expression in cell defined by western blot. Overexpression of Caspase 9 led to autoprocessing following homodimerization and induction of cell death and also increased cell sensitivity to doxorubicin treatment and declined cell viability.
Conclusion: The cloned Caspase 9 was functional in cell and enhanced apoptosis in the treated cells by doxorubicin through self-activation and subsequently amplification of Caspase 3 activation.
Seyed-Hossein Beheshti Shoushtari, Farangis Ataei, Saman Hosseinkhani,
Volume 14, Issue 4 (9-2023)
Abstract
SH-SY5Y is a neuroblastoma cell line which used as a cancer and neurodegenerative disorders model and its neuro-experimental studies. The different diseases cause by a defect in apoptosis pathway. Disruption of apoptotic proteins has an effect on the treatment process and response to drugs. In nerve cells, due to the high expression of apoptosis inhibitory proteins, the efficacy of drugs is low. Combination therapy is one of the developing treatment methods. The aim of this research is to evaluate the effectiveness of doxorubicin drug on apoptosis in SH-SY5Y cells under the conditions of high expression of caspase9. Caspase9 is a key enzyme in intrinsic apoptosis. First, cell viability was obtained through MTT assay under the different drug concentrations. Then, caspase9 gene was transfected in cells and affected by the concentration lower than IC50 of drug, and cell energy level and cell death were checked by different methods. ATP assay showed that the expression of caspase9 with drug lead to ATP decreases. Caspase3/7 activity indicated an increase in cell death by drug and caspase. Propidium staining to hoechst showed that the expression of caspase9 in combination with doxorubicin induce more death. To ensure the expression levels of protein that induces cell death, the amount of caspase3 protein was checked by western blotting, which showed a significant increase in combination of caspase9 and drug. Our findings showed that the induction of caspase9 expression intensifies the effect of drug and the combined treatment may be effective on the responsiveness of neuronal diseases.