S.s. Mirjalili, T. Tohidi Moghadam, R. Hassan Sajedi ,
Volume 10, Issue 4 (12-2019)
Abstract
Recent researches on the application of nanoparticles have been focused on nanostructures of gold with rod morphology, due to having outstanding optical properties for diagnostics and therapeutics of the diseases. The rod morphology of the nanostructures enables strong and sensitive absorption of surface plasmon in the infrared region. In the present research, based on the sensitivity of surface plasmon resonance of gold nanorods to trace changes in the local environment, as well as the importance of rapid detection of trace amounts of albumin in urine, functionalization, and stability of these nanostructures with anti-albumin antibody has been investigated in different concentrations, volumes, time and pH changes. The results of spectroscopic studies of different samples in the visible spectrum near-infrared waves showed that gold nanorods have desirable stability, and their rod morphology characteristic is maintained. The study of the temporal stability of samples showed that the complex samples were stable up to 48 hours for sensing applications. Primary monitoring of the function of the nanobiosensor in the presence of albumin with two normal and abnormal levels of concentration revealed remarkable changes in interparticle distance, size, and morphology of the nanostructures. According to this research, the rod nanostructures can be used to design simple nanobiosensors.
Hoda Dashtipour, Ali Nouras, Sara Daneshjou, Sohameh Mohebbi, Neda Mousaviniri,
Volume 13, Issue 3 (1-2023)
Abstract
These days biosensors have worthy applications in different fields such as biomedicine, disease diagnosis, treatment monitoring, various aspects of the environment, food control, drug production, and assorted sides of medical science. Recently, different types of biosensors such as enzyme biosensors, immune, tissue, DNA, and thermal biosensors have been studied precisely by some research groups. These biosensors have many advantages such as simplicity in implementation, very high sensitivity, automatic performance, intrinsic and natural small size. Another valuable benefit of biosensors is that their high-affinity paring with biomolecules allows sensitive (high-sensitivity) and selective detection from a wide range of analytes. Artificial intelligence (AI) due to its high potency, if combined with biotechnology, like biosensors, can be effective in accurate prediction, diagnosis and treatment of some diseases, including cancer. Today, Machine learning (ML) as one of the branches of AI has become a beneficial tool in analyzing and categorizing obtained data from biosensors for bioanalysis. Using ML algorithms automates the complicated processes of extraction, processing, and assaying data achieved from biosensors. This article is a review for introducing and survey of various biosensors, their applications, and ways to apply them, focusing on cancer and Covid19 which are important diseases in the world obtained from previous studies, as a summary and providing information for researchers which working in this field.