Showing 7 results for Static Magnetic Field
Volume 0, Issue 0 (1-2024)
Abstract
This study aimed to increase the vase life of cut rose flowers by improving the regulation of Programmed Cell Death (PCD). Experiments were carried out on cut rose (Rosa hybrida cv. Dolce vita+) flowers under either physical treatment of Static Magnetic Field (SMF; 15 and 25 mT) for 3 hours, or chemical treatments of silver nano particle (Nano-Ag; 5 and 10 ppm), 6-Benzyladenine (BA; 25 and 50 mg L-1), 1% sucrose, and combinations of 5 and 10 ppm nano-Ag with 3 and 6% sucrose. Results showed that a 15 mT-SMF significantly increased vase life up to 25 days, compared to the controls and to all chemical treatments. Among the chemicals, 5 ppm Nano-Ag and 1% (w/v) sucrose increased vase life to 23 and 18 days, respectively. The smallest decline in fresh weight was observed in the 15 mT-SMF physical treatment. Markedly, the 15 mT-SMF treatment led to the least reduction in Chlorophyll (Chl) content. On the 17th day of the applied different treatments, both Water Uptake (WU) and Relative Fresh Weight (RFW) showed an inverse significant relationship with PCD in cut rose flowers, verifying there markable delayed PCD which is favored the market. As a whole, the most effective induced treatments (15 mT-SMF, 5 ppm Nano-Ag, and 1% Sucrose) are suggested to be promising for enhancing postharvest quality and prolonged vase life of cut rose flowers.
S. Shokrollahi , F. Ghanati, R. Hassan Sajedi ,
Volume 9, Issue 4 (12-2018)
Abstract
Aims: As a naturally occurring environmental factor as well as an external factor resulting from burgeoning technology, static magnetic field (SMF) has considerable effects on plants physiology. The effects of SMF on production of reactive oxygen species (ROS) have been shown in plant cells. The aim of the present research was to evaluate the redox system responses of soybean (Glycine max) to different intensities of SMF.
Materials and Methods: In the present experimental research, M7 soybean seeds in their vegetative phase (14 days) were treated with 20 and 30mT SMF for 4 day, 5 hours daily. The experiments were carried out in a completely randomized design with factorial and at least 3 replications. The data were analyzed by SPSS software, using one-way ANOVA.
Findings: The treatment of 30mT resulted in a reduction in fresh weight, total antioxidant activity, and total regenerative capacity and increased hydrogen peroxide, but did not affect the total contents of phenolic compounds and flavonoids. In the treatment of 20mT, the level of peroxide decreased, but the fresh weight, hydroxyl radical level, antioxidant activity, total phenolic compound, and flavonoids contents increased. The amounts of Fe2+ decreased in 20mT but increased with 30mT.
Conclusion: In the Soybean redox system, SMF of 20mT leads the electrons toward useful redox compounds like phenolic compounds and results in growth stimulation, while SMF of 30mT leads the surplus electrons to destructive compounds such as Fe2+, which results in decrease of the plant growth.
J. Zafari , F. Javani Jouni , M. Satari Keykaleh , P. Abdolmaleki , M.j. Khodayar , A. Jalali ,
Volume 9, Issue 4 (12-2018)
Abstract
Aims: Regarding the treatment of cancer, due to the limitation in the use of high dose and resistance of cancer cells, it is necessary to use optimal methods that have high therapeutic efficacy and reduce the dose of radiation and medicine. The aim of the present research was to investigate toxicity of cisplatin under the influence of static magnetic field in susceptible and drug-resistant cell.
Materials and Methods: In the present experimental study, A2780-CP resistant cell classes and susceptible to A2780 cisplatin were investigated in the field and drug-treated cell groups compared to the drug-receiving group alone, and to determine the effect of static magnetic field and concentration of drug, 10mT for 24 hours and logarithmic drug concentration (1, 10, 50, 100, and 500mcg/ml) were used. Inhibitory concentration of 50% cell growth (IC50) was obtained for the cells in the absence and presence of the magnetic field after conversion of the absorption obtained in the ELISA from the MTT test to cytotoxicity percentage. Data were analyzed with Prism software using two-way ANOVA and T-test.
Findings: In the presence of a static magnetic field and different drug concentrations, a greater reduction in the percentage of In vivo cells was observed. IC50 values for A2780 cells in the absence and presence of magnetic fields were 27.69±9.58 and 8.96±1.48μg/ml for A2780-CP, and 61.61±8.03 and 9.58±3.13μg/ml, respectively.
Conclusion: The mortality rate of the cells treated with cisplatin under the influence of the magnetic field is more in susceptible and drug-resistant cells than that of only drug use. Drug-resistance decreases in the drug-resistant cell class in the presence of a magnetic field.
Volume 11, Issue 0 (10-2009)
Abstract
Objective: The environmental exposure to Magnetic Fields (MFs) may interact with biological systems. MFs are generated from various sources such as power lines, electric appliances at homes and offices, electrified transportation systems including urban railway systems and diagnostic devices such as Magnetic Resonance Imaging (MRI). There are some scientific evidences that imply the exposure to MFs are hazardous to our health and increases the rate of some cancers like leukemia. The biological consequences of exposure to MFs have been investigated from a variety of endpoints. However, most studies have been performed in vitro and have examined effects on cellular processes and its malfunction; such studies can be used as evidence of effects in vivo.
Materials and Methods: In this study Bone Marrow Stem Cells were grown in the absence and in the presence of a 15 mT Static Magnetic Field for 5 hours in order to determine any changes in cell cycle progression using the count of cells in different phases. The count of cells in a special phase of cell cycle indicates the length of that phase. The Static Magnetic Field was performed using a locally designed MF generator.
Results: A significant increase in the number of cells in G0/G1 was observed in comparison with the controls. Also the number of cells in G0/G1 in the cells treated with Hydrogen-Peroxide, as an oxidative agent, was significantly increased in Static MF.
Conclusion: Genetic material damages or mal-function of related proteins may cause these halts. Mfs have not enough energy to affect the biological molecules directly but the mechanism of free radical mediators is probable. These kinds of damages (direct or indirect) can permanently bring the cell cycle to a halt.
Matinsadat Ghafelebashi, Parvaneh Maghami, Abdolhossin Shahverdi, Davoud Doranian, Marjan Sabbaghian,
Volume 11, Issue 3 (10-2020)
Abstract
According to the formation and evolution of life along with static magnetic fields,the permanent exposure has given adaptive ability to beings. Therapeutic magnetism is one of the branches of complementary medicine which uses the low intensity and non-harmful magnetic fields to the body. By studying in infertile couples (20% male factor), the only cause of infertility and in 50% of cases it is considered as an intermediate factor. One of the influential factors in infertility in men is sperm. In the present study, normal specimens in the magnetic field under the intensities of 1,6 and 12 millitesla and at 1,3 and 5 h intervals.
Sperm movement rate was evaluated by CASA, as well as sperm viability, by eosin staining of necrosin and morphology by staining Papanicula. The results of this step on normal sperm showed a significant reduction in the sperm movement ,which that was not affected by the field.
Morphological studies also show that sperm motility is not affected by magnetic field.. the survival rate of sperm was affected by the magnetic field was significantly reduced, and the sperm morphology remained unchanged
Volume 16, Issue 3 (12-2013)
Abstract
Objectives: This study investigated the possible synergistic effect of simultaneous treatment of bone morphogenic protein (BMP)-4 as a chemical stimulator and static magnetic field (SMF) as a physical stimulator on viability percent and proliferation rate in rat bone marrow stem cells.
Methods: Passage 5 cells were trypsinized, and a cell suspension prepared after which the cells were counted and cultured in 25 cm2 flasks. Cells were incubated for one day and washed with phosphate-buffered saline. We added BMP-4 at the optimum concentration of 25 ng/ml at different times (24, 48 and 96 h) into the medium. The cells were exposed at an optimum intensity of 4 mT of the SMF at different exposure times (24, 48, and 96 h). Subsequently cells were washed with phosphate-buffered saline, trypsinized, and separate cell suspensions were prepared from each flask. We investigated the viability and proliferation rates of treated cells by staining them with Trypan blue and performed cell counts with an optical microscope. The mean numbers of whole cells and living cells were considered to be the proliferation and survival rates, respectively.
Results: Increased SMF exposure and BMP-4 increased the viability percent and change in proliferation rate in the treated groups compared with their corresponding controls. The maximum increased viability was observed in the group that was treated with BMP-4 for 96 h.
Conclusion: Our results have supported the hypothesis that SMF alters the viability and proliferation rate of treated BMSCs, which was enhanced when the cells were treated simultaneously with SMF and BMP-4.
Volume 23, Issue 3 (7-2020)
Abstract
Aims: Living cells have an electrical charge created by the presence of ions and free radicals. Magnetic fields interact with ions, especially ferromagnetic materials such as iron that affect living cells. A common feature of about 20 different diseases is the aggregation of proteins in the form amyloid structure. In the current study, the effect of static magnetic field (SMF) on the formation and the toxicity of amyloid structures was investigated.
Materials & Methods: CHO cells were exposed to 6mT SMF in three consecutive days, and the effect of SMF on the formation of amyloid structures in the intrinsic proteins of these cells related to the control was investigated using thioflavin T (ThT) binding assay. The formation of amyloid structures in CHO cells expressing human ProIAPP cells was analyzed by observation of proIAPP protein aggregates linked to GFP protein. The effect of SMF on the toxicity of lysozyme oligomers on CHO and Hela cells was also compared with the controls.
Findings: Exposure of CHO cells to magnetic fields does not have a significant effect on the formation of amyloid structures in the intrinsic proteins of CHO cells and the amount of these structures in CHO cells expressing proIAPP protein but can increase the toxicity of lysozyme oligomers on CHO and Hela cells.
Conclusion: The magnetic field does not have a significant effect on the formation of amyloid structures in the 6mT SMF strength, but it adds to the toxicity of these structures.