Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 297-304 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari Azar A, Darvishzadeh R, Molaei B, Kahrizi D, Darvishi B. Classification of Maize Inbred Line based on Agro-Morphological Traits in order to Produce Hybrid Seed. JMBS 2019; 10 (2) :297-304
URL: http://biot.modares.ac.ir/article-22-16458-en.html
1- Plant Breeding & Biotechnology Department, Agriculture Faculty, Urmia University, Urmia, Iran
2- “Institute of Biotechnology” and “Plant Breeding and Biotechnology Department, Agriculture Faculty”, Urmia University, Urmia, Iran, Plant Breeding and Biotechnology Department, Agriculture Faculty, Urmia University, 11 Kilometer of Sero Road, Daneshgah Boulevard, Urmia, Iran. Postal Code: 5756151818 , r.darvishzadeh@urmia.ac.ir
3- Plant Breeding & Biotechnology Department, Agriculture Faculty, University of Tabriz, Tabriz, Iran
4- Agronomy & Plant Breeding Department, Agriculture Faculty, Razi University, Kermanshah, Iran
5- Seed & Plant Certification & Registration Institute, Agricultural Research Education & Extention Organization (AREEO), Karaj, Iran
Abstract:   (4353 Views)
Maize (Zea mays L.) is one of the most cultivated crops worldwide, owing to its versatility and wide adaptability, and serves as food, animal feed, and raw material for various industrial products. The purpose of the current research was the classification of maize inbred lines in order to produce hybrid seeds based on agro-morphological traits. Each of 100 maize inbred lines was planted in 6 pots as 6 replications and arranged in completely randomized design in an open area near to greenhouse in 2015. The result of the analysis of variance revealed significant differences among lines for all studied traits. The highest correlation was seen between cob’s length and cob’s weight. Stepwise regression analysis revealed that 66.4% of seed yield per plant variation was determined by cob’s length and cob’s weight. Cluster analysis divided inbred lines into 4 groups. The highest Mahalanobis distance (28.07) was observed between cluster 2 and 4. The result of principal component analysis confirmed the calcification by cluster analysis. The genotypes from groups 2 and 4 can be potentially used as parental lines in hybrid varieties production and development of segregating populations.
Full-Text [PDF 906 kb]   (2242 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/08/14 | Accepted: 2017/12/31 | Published: 2019/06/20

References
1. Ashofteh Beiragi M, Ebrahimi M, Mostafavi Kh, Golbashy M, Khavari Khorasani S. A study of morphological basis of corn (Zea mays L.) yield under drought stress condition using correlation and path coefficient analysis. J Cereals Oilseeds. 2011;2(2):32-7. [Link]
2. FAOSTAT data. Crops [Internet]. Rome: FAO; 2011 [cited 2018 May 20]. Available from: http://www.fao.org/faostat/en/#data/QC [Link]
3. Nikolić D, Rakonjac V, Milatović D, Fotirić M. Multivariate analysis of vineyard peach [Prunus persica (L.) Batsch.] germplasm collection. Euphytica. 2010;171:227. [Link] [DOI:10.1007/s10681-009-0032-3]
4. Hallauer AR. Temperate maize and heterosis. In: Coors J, Pandey S, editors. The genetics and exploitation of heterosis in crops. Mexico City: American Society of Agronomy; 1999. pp. 353-61. [Link]
5. Smith SE, Al-Doss A, Warburton M. Morphological and agronomic variation in North African and Arabian alfalfas. Crop Sci. 1991;31(5):1159-63. [Link] [DOI:10.2135/cropsci1991.0011183X003100050016x]
6. Mohammadi SA, Prasanna BM. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci. 2003;43(4):1235-48. [Link] [DOI:10.2135/cropsci2003.1235]
7. Manly BFJ. Multivariate statistical methods: A Primer. Moghaddam M, Mohammadi Shooti A, Aghaei Sarbarzeh M, translators. Tabriz: Pishtaze Elm; 1994. [Persian] [Link]
8. Cross RJ. A proposed revision of the IBPGR barley descriptor list. Theor Appl Genet. 1992;84(3-4):501-7. [Link] [DOI:10.1007/BF00229513]
9. Ayana A, Becele E. Multivariate analysis of morphological variation in sorghum (Sorghum bicolor L. Moench) germplasm from Ethiopia and Eritrea. Genet Resour Crop Evol. 1999;46:273-84. [Link] [DOI:10.1023/A:1008657120946]
10. Hailu F, Merker A, Singh H, Belay G, Johansson E. Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia. Genet Resour Crop Evolut. 2006;53(6):1089-98. [Link] [DOI:10.1007/s10722-005-9776-3]
11. Upadhyaya HD, Reddy LJ, Dwivedi SL, Gowda CLL, Singh S. Phenotypic diversity in cold-tolerant peanut (Arachis hypogaea L.) germplasm. Euphytica. 2009;165(2):279-91. [Link] [DOI:10.1007/s10681-008-9786-2]
12. Kholghi M, Bernousi I, Darvishzadeh R, Pirzad AR, Hatami Maleki H. Collection, evaluation and classification of Iranian confectionary sunflower (Helianthus annuus L.) populations using multivaraite statistical techniques. Afr J Biotechnol. 2011;10(28):5444-51. [Link]
13. Hatami Maleki H, Karimzadeh Gh, Darvishzadeh R, Alavi R. Genetic diversity in oriental tobacco (Nicotiana tabacum L.) by using Multivariate statistical techniques. Iran J Field Crops Res. 2012;10(1):100-6. [Persian] [Link]
14. Kimber G, Feldman M. Wild wheat: An introduction. Columbia: University of Missouri-Columbia; 1987. [Link]
15. Ziaeifard R, Darvishzadeh R, Bernousi I. Study of genetic diversity of agro-morphological traits in confectionery sunflower (Helianthus annuus L.) populations using multivariate statistical techniques. J Crop Breed. 2016;8(17):42-54. [Persian] [Link] [DOI:10.18869/acadpub.jcb.8.17.54]
16. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591-611. [Link] [DOI:10.1093/biomet/52.3-4.591]
17. Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-44. [Link] [DOI:10.1080/01621459.1963.10500845]
18. Fakhraei Lahiji M, Tabar RA, Sarseyfi M, Fathi A, Abadooz GR, Hajhasani M, et al. Genetic diversity mulberry genotypes of Iran by using morphological. J Plant Prod. 2016;39(3):39-50. [Persian] [Link]
19. Arshad Y, Zahravi M. Multivariate analysis of different agronomic traits of Iranian germplasm of bread wheat. Iran J Field Crop Sci. 2013;44(2):261-71. [Persian] [Link]
20. Karami E, Ghannadha MR, Naghavi MR, Mardi M. An evaluation of drought resistance in barley. Iran J Agric Sci. 2005;36(3):547-60. [Persian] [Link]
21. Ashofteh Beiragi M, Khavari Khorasani S, Mostafavi Kh, Golbashy M, Alizadeh A. Study on grain yield and related traits in new corn (Zea mays L.) hybrid varieties using statistical multivariate analysis. Iran J Agron Plant Breed. 2011;7(1):97-116. [Persian] [Link]
22. Golbashy M, Ebrahimi M, Khavari Khorasani S, Choukan R, Zarabi M. Evaluation of morphological traits, yield and yield components of corn (Zea mays L.) hybrids in Mashhad climate. J Agroecol. 2010;2(1):75-84. [Persian] [Link]
23. Golbashy M, Dadresan M, Zarabi M, Fatemi R. Correlation study and regression relations between yield, yield components and important crop characteristics of corn hybrids under different culture conditions. Biquarterly J Plant Produc Sci. 2012;2(1):18-23. [Persian] [Link]
24. Farahani E, Arzani A. Evaluation of genetic variation of durum wheat genotypes using multivariate analyses. J Crop Prod. 2009;1(4):51-64. [Persian] [Link]
25. Gouesnard B, Dallard J, Panouillé A, Boyat A. Classification of French maize populations based on morphological traits. Agronomie. 1997;17(9-10):491-8. [Link] [DOI:10.1051/agro:19970906]
26. Llaurado M, Moreno-Gonzalez J. Classification of Northern Spanish population of maize by methods of numerical taxonomy. 1: Morphological traits. Maydica. 1993;38(1):15-21. [Link]
27. Valizadeh H, Aharizad S, Shiri MR, Mohammadi SA, Farahmand Kh, Bahrampur T. Grouping of new maize (Zea mays L.) hybrids using yield and morphological traits. Iran J Agron Plant Breed. 2014;9(4):27-38. [Persian] [Link]
28. Ramezani M, Samizadeh Lahiji H, Ebrahimi Koulabi H, Kafi Ghasemi A. Agronomic and morphologic analysis of maize hybrids via factor analysis in Hamedan. J Sci Technol Agriculture Natural Resources. 2008;12(45 Pt A)):99-108. [Persian] [Link]
29. Rashidi V, Majidi E, Mohammadi SA, Moghaddam Vahed M. Determine of genetic relationship in durum wheat lines by cluster analysis and identity of morphological main characters in each gropes. J Agric Sci. 2007;13(2):439-50. [Persian] [Link]
30. Sanchez JJ, Goodman MM. Relationships among Mexican and some North American and South American races of maize. Maydica. 1992;37:41-51. [Link]
31. Choukan R, Hosseinzadeh E, Ghanadha MR, Talei E, Mohammadi SA. Corn lines clustering based on morphological traits. J Seed Plant, 2005;22:399-409. [Persian] [Link]
32. Mosaabadi J, Khavari Khorasani S, Siyahsar B, Esmaili A, Mahdinejad N. New corn (Zea mays L.) hybrids grouping based on morphological traits, yield and its components. J Agroecol. 2011;2(4):609-16. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.