Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 305-311 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshjoo S, Dashtban Moghadam E, Jafari M, Rezayat Sorkhabadi S, Khajeh K. Expression, Purification, and Stability Study of Uricase in Escherichia coli. JMBS 2019; 10 (2) :305-311
URL: http://biot.modares.ac.ir/article-22-12652-en.html
1- Medical Nanotechnology Department, Advanced Technologies in Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
2- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
3- Nanotechnology Research Center, Pharmacy Faculty, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad
4- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , khajeh_k@yahoo.com
Abstract:   (3556 Views)
Some diseases such as gout, the formation of kidney stones, Lesch-Nyhan syndrome, Heart disease, diabetes type II and metabolic syndrome are caused due to the high concentration of uric acid. Within drugs, uricase significantly decreases the level of uric acid in plasma. The production, formulation and preservation proteins need special conditions so that there was no alteration in their structure and highest activity and response, at the same time the lowest immunogenicity can be achieved.In this study, uricase from Aspergillus flavus was cloned and expressed in Escherichia coli BL21. The protein was then purified using affinity chromatography. The enzyme activity and stability were compared with the common industrial Rasburicase. Results showed higher activity and stability at different temperatures (50, 37, 25, 4, and-20°C). Since uricase has an important role in the prevention and cure of mentioned diseases, therefore, the stable form of this enzyme could be a potential candidate for drug development.
Full-Text [PDF 909 kb]   (1309 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/08/22 | Accepted: 2017/10/28 | Published: 2019/06/20

1. Rodriguez-martinez JA. Improving the in vitro stability of proteins by PEGylation [Dissertation]. Puerto Rico: University of Puerto Rico, ProQuest Dissertations Publishing; 2010. [Link]
2. Arlington S, Barnett S, Hughes S, Palo J. Pharma 2010: The threshold of innovation [Internet]. Unknown City: IBM Institute for Business Value; 2002 [cited 2018 May 15]. Available from: https://www.pharmamanufacturing.com/assets/Media/MediaManager/ibm_pharma2010_threshold-of-innovation.pdf [Link]
3. Ahuja S, Scypinski S. Handbook of modern pharmaceutical analysis. 2nd edition. 10th Volume. Cambridge: Academic press; 2010. [Link]
4. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: An update. Pharm Res. 2010;27(4):544-75. [Link] [DOI:10.1007/s11095-009-0045-6]
5. Frokjaer S, Otzen DE. Protein drug stability: A formulation challenge. Nat Rev Drug Discov. 2005;4(4):298-306. [Link] [DOI:10.1038/nrd1695]
6. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: Pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909-34. [Link] [DOI:10.1002/jps.21566]
7. Chen Z, Wang Z, He X, Guo X, Li W, Zhang B. Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Appl Microbiol Biotechnol. 2008;79(4):545-54. [Link] [DOI:10.1007/s00253-008-1472-8]
8. Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery Jr C, Jones P, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA. 1994;91(2):742-6. [Link] [DOI:10.1073/pnas.91.2.742]
9. Arora K, Sumana G, Saxena V, Gupta R, Gupta S, Yakhmi J, et al. Improved performance of polyaniline-uricase biosensor. Anal Chim Acta. 2007;594(1):17-23. [Link] [DOI:10.1016/j.aca.2007.04.068]
10. Wang X, Hagiwara T, Uchiyama S. Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor. Anal Chim Acta. 2007;587(1):41-6. [Link] [DOI:10.1016/j.aca.2007.01.025]
11. Retailleau P, Colloc'h N, Vivares D, Bonnete F, Castro B, El-Hajji M, et al. Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 3):453-62. [Link] [DOI:10.1107/S0907444903029718]
12. Bosly A, Sonet A, Pinkerton R, McCowage G, Bron D, Sanz MA et al. Rasburicase (Recombinant Urate Oxidase) for the Management of Hyperuricemia in Patients with Cancer: Report of an international compassionate use study. Cancer. 2003;98(5):1048-54. [Link] [DOI:10.1002/cncr.11612]
13. Pui CH. Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother. 2002;3(4):433-42. [Link] [DOI:10.1517/14656566.3.4.433]
14. Pui CH, Jeha S, Irwin D, Camitta B. Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancyassociated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia. 2001;15(10):1505-9. [Link] [DOI:10.1038/sj.leu.2402235]
15. Li J, Chen Z, Hou L, Fan H, Weng S, Xu C, et al. High-level expression, purification, and characterization of non-tagged Aspergillus flavus urate oxidase in Escherichia coli. Protein Expr Purif. 2006;49(1):55-9. [Link] [DOI:10.1016/j.pep.2006.02.003]
16. Prencipe L, Fossati P, Vanzetti G. Enzymatic determination of uric acid in serum with the trinder reaction (author's transl). Quad. Sclavo Diagn. 1978;15(3):382-94. [Italian] [Link]
17. Bradford MM. A rapid and sensitive method for the quantization of microorganism quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248-54. [Link] [DOI:10.1016/0003-2697(76)90527-3]
18. O'loughlin JA, Bruder JM, Lysaght MJ. Degradation of low molecular weight uremic solutes by oral delivery of encapsulated enzymes. Asaio J. 2004;50(3):253-60. [Link] [DOI:10.1097/01.MAT.0000123803.35535.71]
19. Poznansky MJ. In vitro and in vivo activity of soluble cross-linked uricase-albumin polymers: A model for enzyme therapy. Life Sci. 1979;24(2):153-8. [Link] [DOI:10.1016/0024-3205(79)90125-5]
20. Ihler G, Lantzy A, Purpura J, GLEw RH. Enzymatic degradation of uric acid by uricase-loaded human erythrocytes. J Clin Invest. 1975;56(3):595-602. [Link] [DOI:10.1172/JCI108129]
21. Yasuda Y, Fujita T, Takakura Y, Hashida M, Sezaki H. Biochemical and biopharmaceutical properties of macromolecular conjugates of uricase with dextran and polyethylene glycol. Chem Pharm Bull. (Tokyo). 1990;38(7):2053-6. [Link] [DOI:10.1248/cpb.38.2053]
22. Veronese FM, Pasut G. PEGylation: Posttranslational bioengineering of protein biotherapeutics. Drug Discov. Today Technol. 2008;5(2-3):e57-64. [Link] [DOI:10.1016/j.ddtec.2009.02.002]
23. Tan QY, Wang N, Yang H, Zhang LK, Liu S, Chen L, et al. Characterization, stabilization and activity of uricase loaded in lipid vesicles. Int J Pharm. 2010;384(1-2):165-72. [Link] [DOI:10.1016/j.ijpharm.2009.09.036]
24. Hegedus I, Nagy E. Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles. Chem Eng Sci. 2009;64(5):1053-60 [Link] [DOI:10.1016/j.ces.2008.10.063]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.