1. Sorensen OE. Antimicrobial peptides in cutaneous wound healing. In: Antimicrobial peptides: Role in human health and disease. Harder J, Schröder JM. Berlin: Springer International Publishing; 2016. pp. 1-15. [
Link] [
DOI:10.1007/978-3-319-24199-9_1]
2. Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294. [
Link]
3. O'Connor S, Szwej E, Nikodinovic-Runic J, O'Connor A, Byrne AT, Devocelle M, et al. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials. 2013;34(11):2710-8. [
Link]
4. Von Deuster CI, Knecht V. Antimicrobial selectivity based on zwitterionic lipids and underlying balance of interaction. Biochimi Biophys Acta. 2012;1818(9):2192-201. [
Link] [
DOI:10.1016/j.bbamem.2012.05.012]
5. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207-15. [
] [
DOI:10.1016/j.peptides.2012.07.001]
6. Chen C, Hu J, Zeng P, Pan F, Yaseen M, Xu H, et al. Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials. 2014;35(5):1552-61. [
Link]
7. Mihajlovic M, Lazaridis T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta. 2012;1818(5):1274-83. [
Link] [
DOI:10.1016/j.bbamem.2012.01.016]
8. Rahmanpour A, Ghahremanpour MM, Mehrnejad F, Moghaddam ME. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: A comparative molecular dynamics study. J Biomol Struct Dyn. 2013;31(12):1393-403. [
Link] [
DOI:10.1080/07391102.2012.737295]
9. Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: Form follows function. Nat Rev Drug Discov. 2011;11(1):37-51. [
Link]
10. Hilchie AL, Wuerth K, Hancock RE. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol. 2013;9(12):761-8. [
Link] [
DOI:10.1038/nchembio.1393]
11. Yedery RD, Jerse AE. Augmentation of cationic antimicrobial peptide production with histone deacetylase inhibitors as a novel epigenetic therapy for bacterial infections. Antibiotics (Basel). 2015;4(1):44-61. [
Link] [
DOI:10.3390/antibiotics4010044]
12. Yin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem. 2012;287(10):7738-45. [
Link] [
DOI:10.1074/jbc.M111.303602]
13. Cox E, Michalak A, Pagentine S, Seaton P, Pokorny A. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Biochim Biophys Acta. 2014;1838(9):2198-204. [
Link] [
DOI:10.1016/j.bbamem.2014.04.018]
14. Porcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004;279(44):45815-23. [
Link] [
DOI:10.1074/jbc.M405454200]
15. Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem. 1996;237(1):303-10. [
Link] [
DOI:10.1111/j.1432-1033.1996.0303n.x]
16. Epand RF, Ramamoorthy A, Epand RM. Membrane lipid composition and the interaction of pardaxin: The role of cholesterol. Protein Pept Lett. 2006;13(1):1-5.
https://doi.org/10.2174/092986606774502063 [
Link] [
DOI:10.2174/0929866510602010001]
17. Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles mechanism of outer membrane permeabilization. J Biol Chem. 2010;285(6):3883-95. [
Link] [
DOI:10.1074/jbc.M109.065672]
18. Vad BS, Bertelsen K, Johansen CH, Pedersen JM, Skrydstrup T, Nielsen NC, et al. Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption. Biophys J. 2010;98(4):576-85. [
Link]
19. Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs. 2012;10(8):1852-72. [
Link]
20. Li LB, Vorobyov I, Allen TW. The role of membrane thickness in charged protein–lipid interactions. Biochim Biophys Acta. 2012;1818(2):135-45. [
Link] [
DOI:10.1016/j.bbamem.2011.10.026]
21. Scheraga HA, Khalili K, Liwo A. Protein-folding dynamics: Overview of molecular simulation techniques. Annu Rev Phys Chem. 2007;58:57-83. [
Link] [
DOI:10.1146/annurev.physchem.58.032806.104614]
22. Islami M, Mehrnejad F, Doustdar F, Alimohammadi M, Khadem-Maaref M, Mir-Derikvand M, et al. Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Chem Biol Drug Des. 2014;84(2):242-52. [
Link]
23. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1-3):43-56. [
Link] [
DOI:10.1016/0010-4655(95)00042-E]
24. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem phys.1984;81(8):3684-90. [
Link] [
DOI:10.1063/1.448118]
25. Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357-75. [
Link]
26. Liu X, Li Y, Li Zh, Lan X, Leung HM, Li J, et al. Mechanism of anticancer effects of antimicrobial peptides. J Fiber Bioeng Inform. 2015;8(1):25-36. [
Link]