1. Sharanreddy M, Kulkarni PK. Can EEG test helps in identifying brain tumor?. Int Sch Sci Res Innov. 2013;7(11):703-8. [
Link]
2. Martino J, Honma SM, Findlay AM, Guggisberg AG, Owen JP, Kirsch HE, et al., Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol. 2011;69(3):521-32. [
Link] [
DOI:10.1002/ana.22167]
3. Jochmann T, Güllmar D, Haueisen J, Reichenbach JR. Influence of tissue conductivity changes on the EEG signal in the human brain: A simulation study. Z Med Phys. 2011;21(2):102-12. [
Link] [
DOI:10.1016/j.zemedi.2010.07.004]
4. Poulos M, Felekis T, Evangelou A. Is it possible to extract a fingerprint for early breast cancer via EEG analysis?. Med Hypotheses. 2012;78(6):711-6. [
Link] [
DOI:10.1016/j.mehy.2012.02.016]
5. Poulos M, Maliagani E, Paschopoulos M, Bokos G. Endometrial cancer recognition via EEG dependent upon 14-3-3 protein leading to an ontological diagnosis. Int Sch Sci Res Innov. 2009:3(7):143-50. [
Link]
6. Silipo R, Deco G, Bartsch H. Brain tumor classification based on EEG hidden dynamics. Intell Data Anal. 1999:3(4):287-306.
https://doi.org/10.3233/IDA-1999-3404 [
Link] [
DOI:10.1016/S1088-467X(99)00024-4]
7. Karameh FN, Dahleh MA. Automated classification of EEG signals in brain tumor diagnostics. American Control Conference, 28-30 June, 2000, Chicago, IL, USA. Piscataway: IEEE; 2000. [
Link] [
DOI:10.1109/ACC.2000.877006]
8. Habl M, Bauer Ch, Ziegaus Ch, Lang EW, Schulmeyer F. Can ICA help identify brain tumor related EEG signals?. International Workshop on Independent Component Analysis and Blind Signal Separation 19-22 June 2000, Helsinki, Finland (ICA 2000). Helsinki: Helsinki University of Technology; 2000. p. 609-14. [
Link]
9. Chetty S, Venayagamoorthy GK. A neural network based detection of brain tumours using electroencephalography. International Conference on Artificial Intelligence and Soft Computing, July 17-19, 2002, Banff, Canada. Piscataway: IEEE PES; 2002. p. 391-6. [
Link]
10. Murugesan M, Sukanesh R. Automated detection of brain tumor in EEG signals using artificial neural networks. International Conference on Advances in Computing, Control, and Telecommunication Technologies, 28-29 Dec, 2009, Trivandrum, Kerala, India. Piscataway: IEEE; 2009. [
Link] [
DOI:10.1109/ACT.2009.77]
11. Murugesan M, Sukanesh R. Towards detection of brain tumor in electroencephalogram signals using support vector machines. Int J Comput Theory Eng. 2009;1(5):622-31. [
Link] [
DOI:10.7763/IJCTE.2009.V1.101]
12. Selvam VS, Shenbagadevi S. Brain tumor detection using scalp EEG with modified wavelet-ICA and multi layer feed forward neural network. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6104-9. [
Link]
13. Samant IS, Kanungo GK, Mishra SK. Desired EEG signals for detecting brain tumor using lms algorithm and feedforward network. Int J Eng Trends Technol. 2012:3(6):718-23. [
Link]
14. Sharanreddy M, Kulkarni PK. Brain tumor epilepsy seizure identification using multi-wavelet transform, neural network and clinical diagnosis data. Int J Comput Appl. 2013;67(2):10-7. [
Link]
15. Sharanreddy M, Kulkarni PK. Detection of primary brain tumor present in EEG signal using wavelet transform and neural network. Int J Biol Med Res. 2013;4(1):2855-9. [
Link]
16. Surkar AA, Ambatkar N. Review on wavelet transform based EEG analysis for primary tumor detection. Int J Recent Innov Trends Comput Commun. 2015:3(2):106-9. [
Link]
17. Salai Selvam V, Shenbaga Devi S. Analysis of spectral features of EEG signal in brain tumor condition. Meas Sci Rev. 2015;15(4):219-25. [
Link] [
DOI:10.1515/msr-2015-0030]
18. Padmapriya P, Manikandan K, Jeyanthi K, Renuga V, Sivaraman J. Detection and classification of brain tumor using radial basis function. Indian J Sci Technol. 2016:9(1):1-5. [
Link] [
DOI:10.17485/ijst/2016/v9i1/85758]
19. Urigüen JA, Garcia-Zapirain B. EEG artifact removal-state-of-the-art and guidelines. J Neural Eng. 2015 Jun;12(3):031001. [
Link] [
DOI:10.1088/1741-2560/12/3/031001]
20. Rajendra Acharya U, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl Based Syst. 2015;88:85-96. [
Link] [
DOI:10.1016/j.knosys.2015.08.004]
21. Hornero R, Abásolo D, Jimeno N, Sánchez CI, Poza J, Aboy M. Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects. IEEE Trans Biomed Eng. 2006;53(2):210-8. [
Link] [
DOI:10.1109/TBME.2005.862547]
22. Christopher M B. Pattern recognition and machine learning. 1st ed. Springer-Verlag: Springer; 2006. [
Link]
23. Chaovalitwongse WA, Fan YJ, Sachdeo RC. On the time series K-nearest neighbor classification of abnormal brain activity. IEEE Trans Syst Man Cybern Part A Syst Hum. 2007;37(6):1005-16. [
Link] [
DOI:10.1109/TSMCA.2007.897589]