Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 385-393 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghobadian S, Ganjidoust H, Ayati B, Soltani N. The Growth and Quality Optimization of Spirulina Biomass by Changing the Dilution of Medium and Using the Aeration Cycle. JMBS 2018; 9 (3) :385-393
URL: http://biot.modares.ac.ir/article-22-13754-en.html
1- Environmental Engineering Department, Civil & Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Environmental Engineering Department, Civil & Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , h-ganji@modares.ac.ir
3- Petroleum Microbiology Department, Research Institute of Applied Science, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
Abstract:   (5518 Views)
Aims: The increasing development of microalgae applications has led to the concentration of new multidisciplinary studies to facilitate commercial cultivation of these organisms due to cost reduction and productivity enhancement. The aim of this study was the growth and quality optimization of Spirulina biomass by changing the dilution of medium and using the aeration cycle.
Materials and Methods: In this experimental study, the effect of concentration of Zarrouk medium (0 to 100% dilution) and aeration cycle on specific growth rate and dry weight, as well as the content of chlorophyll and carotenoids of Spirulina were investigated, using response surface method, central design. A total duration of 16 hours was aerated in any 24-hour period; the interval time between these aerated periods varied between 1 to 8 hours. The data were analyzed by SPSS 16 software, using multiple regression test.
Findings: The highest biomass (0.659mg/ml) was obtained at 80% concentration of culture media and aeration cycle of 2.75 hours and the highest specific growth rate (0.230 daily) was obtained at 60% concentration and aeration cycle of 4.5 hours. The highest aeration cycle (8 hours) resulted in a significant and simultaneous increase in the content of chlorophyll and carotenoids (11.65 and 2.67 mg/g, respectively).
Conclusion: The growth and quality optimization of Spirulina biomass can be accomplished by changing the dilution of the medium and using the aeration cycle.
Full-Text [PDF 1267 kb]   (1941 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2016/09/10 | Accepted: 2017/02/1 | Published: 2018/09/22

References
1. Brennan L, Owende P. Biofuels from microalga - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557-77. [Link] [DOI:10.1016/j.rser.2009.10.009]
2. Dos Santos RR, Araújo OQF, De Medeiros JL, Chaloub RM. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Technol. 2016;204:38-48. [Link] [DOI:10.1016/j.biortech.2015.12.077]
3. Giordano M, Palmucci M, Norici A. Taxonomy and growth conditions concur to determine the energetic suitability of algal fatty acid complements. J Appl Phycol. 2015;27(4):1401-13. [Link] [DOI:10.1007/s10811-014-0457-5]
4. De Queiroz Fernandes Araújo O, De Medeiros JL, Yokoyama L, Do Rosário Vaz Morgado C. Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage). Energy. 2015;92(Part 3):556-68. [Link] [DOI:10.1016/j.energy.2015.03.116]
5. Li ZY, Guo SY, Li L. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol. 2003;89(2):171-6. [Link] [DOI:10.1016/S0960-8524(03)00041-5]
6. Ciferri O. ‏Spirulina, the edible microorganism. Microbiol Rev. 1983;47(4):551-78 [Link]
7. Klejdus B, Kopecký J, Benesová L, Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A. 2009;1216(5):763-71. [Link] [DOI:10.1016/j.chroma.2008.11.096]
8. Belay A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutraceutical Assoc. 2002;5(2):27-48. [Link]
9. Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3(4):255-66. [Link] [DOI:10.1016/j.jff.2011.07.001]
10. Sarumathi A, Sethupathy S, Saravanan N. The protective efficacy of Spirulina against bacterial endotoxin potentiated alcoholic liver disease. J Funct Foods. 2014;9:254-63. [Link] [DOI:10.1016/j.jff.2014.04.026]
11. Lin CC, Wei CH, Chen CI, Shieh CJ, Liu YC. Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol. 2013;135:640-3. [Link] [DOI:10.1016/j.biortech.2012.09.138]
12. Sirisha Parimi N, Singh M, Kastner JR, Das KC. Biomethane and biocrude oil production from protein extracted residual Spirulina platensis. Energy. 2015;93(Part 1):697-704. [Link] [DOI:10.1016/j.energy.2015.09.041]
13. Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016;15:59-64. [Link] [DOI:10.1016/j.algal.2016.02.009]
14. Moraes L, Da Rosa GM, Cardias BB, Dos Santos LO, Costa JAV. Microalgal biotechnology for greenhouse gas control: Carbon dioxide fixation by Spirulina sp. at different diffusers. Ecol Eng. 2016;91:426-31. [Link] [DOI:10.1016/j.ecoleng.2016.02.035]
15. Rodrigues MS, Ferreira LS, Converti A, Sato S, Carvalho JCM. Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol. 2010;101(12):4491-8. [Link] [DOI:10.1016/j.biortech.2010.01.054]
16. Carvalho JCM, Francisco FR, Almeida KA, Sato S, Converti A. Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. J Phycol. 2004;40(3):589-97. [Link] [DOI:10.1111/j.1529-8817.2004.03167.x]
17. Ogbonda KH, Aminigo RE, Abu GO. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol. 2007;98(11):2207-11. [Link] [DOI:10.1016/j.biortech.2006.08.028]
18. Vonshak A, Tomaselli L. Arthrospira (Spirulina): Systematics and ecophysiology biochemistry. In: Vonshak A, editor. Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Abingdon: Taylor & Francis; 2004. [Link]
19. De Morais MG, Costa JA. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol. 2007;129(3):439-45. [Link] [DOI:10.1016/j.jbiotec.2007.01.009]
20. Eustance E, Wray JT, Badvipour Sh, Sommerfeld MR. The effects of limiting nighttime aeration on productivity and lipid accumulation in Scenedesmus dimorphous. Algal Res. 2015;10:33-40. [Link] [DOI:10.1016/j.algal.2015.04.002]
21. Atteia A, Van Lis R, Tielens AG, Martin WF. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta. 2013;1827(2):210-23. [Link] [DOI:10.1016/j.bbabio.2012.08.002]
22. Costa JAV, Cozza KL, Oliveira L, Magagnin G. Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J Microbiol Biotechnol. 2001;17(5):439-42. [Link] [DOI:10.1023/A:1011925022941]
23. Andersen RA, Phycological Society of America, editors. Algal culturing techniques. Cambridge: Academic press; 2005. [Link]
24. Marker AFH. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biolo. 1972;2(4):361-85. [Link] [DOI:10.1111/j.1365-2427.1972.tb00377.x]
25. Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem. 1993;268(23):17348-53. [Link]
26. Davis TW, Berry DL, Boyer GL, Gobler CJ. The effects of temperature and nutrient on the growth and dynamics of toxic and non-toxic strains of Microcyystis during cyanobacteria bloom. Harmful Algae. 2009;8(5):715-25. [Link] [DOI:10.1016/j.hal.2009.02.004]
27. Ghobadian S, Ganjidoost H, Ayati B, Soltani N. Evaluation of the effects of aeration cycle and culture medium concentration on biomass qualitative and quantitative indices in microalga Spirulina as candidate for wastewater treatment. J Aquat Ecol. 2015;5(2):87-99. [Persian] [Link]
28. Soltani N, Khavari Nejad RA, Tabatabaei Yazdi M, Shokravi Sh, Fernández-Valiente E. Variation of nitrogenase activity photosynthesis and pigmention of the cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH values. World J Microbiol Biotechnol. 2006;22:571. [Link] [DOI:10.1007/s11274-005-9073-5]
29. Ajayan KV, Selvaraju M. Reflector based chlorophyll production by Spirulina platensis through energy save mode. Bioresour Technol. 2011;102(16):7591-4. [Link] [DOI:10.1016/j.biortech.2011.05.013]
30. Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic culture. Enzyme Microb Technol. 2004;34(5):461-5. [Link] [DOI:10.1016/j.enzmictec.2003.12.002]
31. Radmann EM, Reinehr CO, Costa JAV. Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture. 2007;265(1-4):118-26. [Link] [DOI:10.1016/j.aquaculture.2007.02.001]
32. Gitelson A, Qiuang H, Richmond A. Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Appl Environ Microbiol. 1996;62(5):1570-3. [Link]
33. Qiang H, Guterman H, Richmond A. Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. J Phycol. 1996;32(6):1066-73. [Link] [DOI:10.1111/j.0022-3646.1996.01066.x]
34. Fábregas J, Pati-o M, Arredondo-Vega BO, Tobar JL, Otero A. Renewal rate and nutrient concentration as tools to modify productivity and biochemical composition of cyclostat cultures of the marine microalga Dunaliella tertiolecta. Appl Microbiol Biotechnol. 1995;44(3-4):287-92. [Link] [DOI:10.1007/BF00169918]
35. Fábregas J, Pati-o M, Vecino E, Cházaro F, Otero A. Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol. 1995;43(4):617-21. https://doi.org/10.1007/s002530050460 [Link] [DOI:10.1007/BF00164763]
36. Jason Smith G, Zimmerman RC, Alberte RS. Molecular and physiological responses of diatoms to variable levels of irradiance and nitrogen availability: Growth of Skeletonema costanum in simulated upwelling conditions. Limnol Oceanogr. 1992;37(5):989-1007. [Link] [DOI:10.4319/lo.1992.37.5.0989]
37. Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carvalho JCM. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem Eng J. 2009;43(1):52-7. [Link] [DOI:10.1016/j.bej.2008.08.009]
38. Rangel-Yagui Cde O, Danesi ED, De Carvalho JC, Sato S. Chlorophyll production from Spirulina platensis: Cultivation with urea addition by fed-batch process. Bioresour Technol. 2004;92(2):133-41. [Link] [DOI:10.1016/j.biortech.2003.09.002]
39. Walsh K, Jones GJ, Hugh Dunstan R. Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry. 1997;44(5):817-24. [Link] [DOI:10.1016/S0031-9422(96)00573-0]
40. Harker M, Tsavalos AJ, Young AJ. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng. 1996;82(2):113-8. [Link] [DOI:10.1016/0922-338X(96)85031-8]
41. Harker M, Tsavalos AJ, Young AJ. Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis. J Appl Phycol. 1995;7(4):399-406. [Link] [DOI:10.1007/BF00003797]
42. Ben-Amotz A, Avron M. On the factors which determine massive beta-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 1983;72(3):593-7. [Link] [DOI:10.1104/pp.72.3.593]
43. Gómez PI, González MA. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res. 2005;38(2-3):151-62. [Link] [DOI:10.4067/S0716-97602005000200005]
44. Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol. 2013;128:118-24. [Link] [DOI:10.1016/j.biortech.2012.10.049]
45. Saha SK, Moane S, Murray P. Effect of macro- and micro -nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour Technol. 2013;147:23-8. [Link] [DOI:10.1016/j.biortech.2013.08.022]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.