Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 525-529 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eftekhari N, Kargar M. Assessment of Optimal Iron Concentration in the Precipitation of Jarosite and the Activity of Acidithiobacillus ferrooxidans. JMBS 2018; 9 (4) :525-529
URL: http://biot.modares.ac.ir/article-22-13929-en.html
1- Microbiology Department, Science Faculty, Kerman Branch, Islamic Azad University, Kerman, Iran
2- Microbiology Department, Science Faculty, Jahrom Branch, Islamic Azad University, Jahrom, Iran, Jahrom Branch, Islamic Azad University, 15 Kilometer of Jahrom-Shiraz Road, Rahbari Boulevard, Jahrom, Iran. Postal Code: 7414785318
Abstract:   (8667 Views)
Aims: Acidithiobacillus ferrooxidans is one of the most important microorganism in bioleaching. During this process, biooxidation of iron leads to precipitation of jarosite. Jarosite decreases copper bioleaching efficiency. The aim of this study was to investigate the iron concentration in the precipitation of jarosite and the activity of Acidithiobacillus ferrooxidans.
Materials and Methods: Acidithiobacillus ferrooxidans was cultivated in 9k medium containing ferrous sulfate (Fe2+) with concentrations of 5, 10, 20, 30, and 50g/100ml and also jarosite seed medium with concentrations of 5 and 10g/l. The iron concentration was assessed by atomic absorption. Jarosite was analyzed by Fourier-transform infrared spectroscopy (FTIR) and X-ray crystallography (XRD) methods.
Findings: The cell count of Acidithiobacillus ferrooxidans, in Fe2+ concentrations of 5, 10, 20, 30, and 50g/100ml was 5×107, 2.5×108, 1.5×107, 10×107, and 7×107cell/ml, respectively. The jarosite precipitation rate in concentrations of 5, 10, 20, 30, 50g/100ml was 1.80, 6.09, 10.90, 16.65, and 28.8g. The minimum rate of jarosite precipitation was in 10g/100ml of Fe2+ concentration. Jarosite precipitation rate increased by increment of Fe2+ concentration and it was parallel with decrease of Acidithiobacillus ferrooxidans cell count in concentrations of 5 and 10g/l of jarosite seed; the jarosite precipitation rate was 3.13 , 3.68g. However the growth of Acidithiobacillus ferrooxidans was better than the absence of jarosite seed.
Conclusion: The optimal concentration of Fe2+ in 9K medium is 10g/100 ml. In this condition, the maximum growth rate of Acidithiobacillus ferrooxidans and minimal precipitation of jarosite exist.
Full-Text [PDF 511 kb]   (3402 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/08/24 | Accepted: 2017/02/20 | Published: 2018/12/21

1. Nemati M, Harrison STL, Hansford GS, Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: A review on the kinetic aspects. Biochem Eng J. 1998;1(3):171-90. [Link] [DOI:10.1016/S1369-703X(98)00006-0]
2. Das T, Chaudhury GR, Ayyappan S. Use of Thiobacillus ferrooxidans for iron oxidation and precipitation. Biometals. 1998;11(2):125-9. [Link] [DOI:10.1023/A:1009277928506]
3. Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng. 2006;19(9):960-7. [Link] [DOI:10.1016/j.mineng.2005.10.024]
4. Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, et al. Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy. 2010;101(1-2):7-14. [Link] [DOI:10.1016/j.hydromet.2009.11.004]
5. Pradhan N, Nathsarma KC, Srinivasa Rao K, Sukla LB, Mishra BK. Heap bioleaching of chalcopyrite: A review. Miner Eng. 2008;21(5):355-65. [Link] [DOI:10.1016/j.mineng.2007.10.018]
6. Ojumu TV, Petersen J. The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture: The effect of pH. Hydrometallurgy. 2011;106(1-2):5-11. [Link] [DOI:10.1016/j.hydromet.2010.11.007]
7. Liu J, Li B, Zhong D, Xia L, Qiu G. Preparation of jarosite by Acidithiobacillus ferrooxidans oxidation. J Cent South Univ Technol. 2007;14(5):623-8. [Link] [DOI:10.1007/s11771-007-0119-8]
8. Pogliani C, Donati E. Immobilisation of Thiobacillus ferrooxidans: Importance of jarosite precipitation. Process Biochem. 2000;35(9):997-1004. [Link] [DOI:10.1016/S0032-9592(00)00135-7]
9. Zhu L, Lin C, Wu Y, Lu W, Liu Y, Ma Y, et al. Jarosite-related chemical processes and water ecotoxicity in simplified anaerobic microcosm wetlands. Environ Geol. 2008;53(7):1491-502. [Link] [DOI:10.1007/s00254-007-0758-y]
10. Córdoba EM, Mu-oz JA, Blázquez ML, González F, Ballester A. Leaching of chalcopyrite with ferric ion, Part II: Effect of redox potential. Hydrometallurgy. 2008;93(3-4):88-96. https://doi.org/10.1016/j.hydromet.2008.04.015 https://doi.org/10.1016/j.hydromet.2007.11.006 https://doi.org/10.1016/j.hydromet.2007.11.005 [Link] [DOI:10.1016/j.hydromet.2008.04.016]
11. Welch SA, Christy AG, Kirste D, Beavis SG, Beavis F. Jarosite dissolution - Trace cation flux in acid sulfate soils. Chem Geol. 2007;245(3-4):183-97. [Link] [DOI:10.1016/j.chemgeo.2007.07.028]
12. Kumar SR, Gandhi KS. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol. 1990;33(5):524-8. [Link] [DOI:10.1007/BF00172545]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.