Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 15-21 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Takrim S, Motamedi M, Jafari M, Amani J, Salmanian A. Expression, Purification and Immunogenicity Evaluation of Recombinant Fusion Protein (F) from Newcastle Virus in Animal Model. JMBS 2019; 10 (1) :15-21
URL: http://biot.modares.ac.ir/article-22-14018-en.html
1- National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
2- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3- National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran, Institute of Genetic Engineering & Biotechnology, Pajoohesh Boulevard, Shahrak-e Pajoohesh, 15 Kilometer Tehran-Karaj Highway, Tehran, Iran, Postal Code: 1497716316 , salman@nigeb.ac.ir
Abstract:   (10245 Views)
Newcastle disease virus (NDV) is an infectious agent of a large variety of birds, including chickens, which poses a real threat to the poultry industry. This virus is a member of the avian Paramyxoviridae. NDV is enveloped with membrane-embedded spikes consisting of glycosylated hemagglutinin (HN) and fusion (F) proteins. The mean death time after vNDV infection is 2-6 days, hence, the presence of preexisting antibodies prior to infection appears to be the most critical protection from this disease. Antibodies produced against the HN and F trans-membrane surface glycoproteins are able to neutralize NDV upon subsequent infection and inhibition of viral fusion with the host cell membrane, respectively. In this experimental study, the immunogenic epitopes of the F protein of NDV were designed artificially and were expressed in the heterologous system (Escherichia coli), using the appropriate vector (pET32a). In order to evaluate the immunogenicity of the recombinant f fragment, the protein was injected into the animal model. Immune response and the rise of specific antibodies titers were determined in immune sera. The results showed that immunization of mice with this recombinant protein could elicit significant serum IgG antibody up to 1/204800 titer. We show that the recombinant F protein was recognized by the mice sera immunized with the commercial vaccine. Moreover, the reactivity of vaccine strain virus with sera from F protein immunized mice suggested that the F protein is able to present similar epitopes with viral vaccine strain and hopefully could stimulate the immune system of the animal against the infectious viruses.
Full-Text [PDF 537 kb]   (3984 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/11/14 | Accepted: 2017/06/13 | Published: 2019/03/16

1. Nath B, Barman NN, Kumar S. Molecular characterization of Newcastle disease virus strains isolated from different outbreaks in Northeast India during 2014-15. Microb Pathog. 2016;91:85-91. [Link] [DOI:10.1016/j.micpath.2015.11.026]
2. Aldous EW, Mynn JK, Banks J, Alexander DJ. A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol. 2003;32(3):237-55. [Link] [DOI:10.1080/030794503100009783]
3. Rasoli M, Yeap SK, Tan SW, Moeini H, Ideris A, Bejo MH, et al. Alteration in lymphocyte responses, cytokine and chemokine profiles in chickens infected with genotype VII and VIII velogenic Newcastle disease virus. Comp Immunol Microbiol Infect Dis. 2014;37(1):11-21. [Link] [DOI:10.1016/j.cimid.2013.10.003]
4. Alexander DJ, Aldous EW, Fuller CM. The long view: A selective review of 40 years of Newcastle disease research. Avian Pathol. 2012;41(4):329-35. [Link] [DOI:10.1080/03079457.2012.697991]
5. He X, Xing R, Li K, Qin Y, Zou P, Liu S, et al. Beta-chitosan extracted from Loligo Japonica for a potential use to inhibit Newcastle disease. Int J Biol Macromol. 2016;82:614-20. [Link] [DOI:10.1016/j.ijbiomac.2015.10.059]
6. Ganar K, Das M, Sinha S, Kumar S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014;184:71-81. [Link] [DOI:10.1016/j.virusres.2014.02.016]
7. Hao H, Chen Sh, Wu P, Wang J, Duan X, Du E, et al. Genomic characterisation of two virulent Newcastle disease viruses isolated from crested ibis (Nipponia nippon) in China. Gene. 2014;553(2):84-9. [Link] [DOI:10.1016/j.gene.2014.09.059]
8. Miller PJ, Afonso CL, El Attrache J, Dorsey KM, Courtney SC, Guo Z, et al. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev Comp Immunol. 2013;41(4):505-13. [Link] [DOI:10.1016/j.dci.2013.06.007]
9. Haryanto A, Purwaningrum M, Verawati S, Irianingsih SH, Wijayanti N. Pathotyping of local isolates Newcastle disease virus from field specimens by RT-PCR and restriction endonuclease analysis. Procedia Chem. 2015;14:85-90. [Link] [DOI:10.1016/j.proche.2015.03.013]
10. Getachew B, Kyule MN, Balcha M, Dawo F. Isolation and identification of Newcastle disease virus from outbreak cases and apparently healthy local chickens in South West Shewa, Ethiopia. Int J Microbiol Res. 2015;6(1):5-8. [Link]
11. De Leeuw O, Peeters B. Complete nucleotide sequence of Newcastle disease virus: Evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol. 1999;80(Pt 1):131-6. [Link] [DOI:10.1099/0022-1317-80-1-131]
12. Liu MM, Cheng JL, Yu XH, Qin ZM, Tian FL, Zhang GZ. Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain. Biotechnol Lett. 2015;37(6):1287-96. [Link] [DOI:10.1007/s10529-015-1799-z]
13. Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C. Human tumor cell modification by virus infection: An efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 1999;6(1):63-73. [Link] [DOI:10.1038/sj.gt.3300787]
14. Miller PJ, Afonso CL. Newcastle disease virus. In: Wiley. Encyclopedia of Life Sciences. Hoboken: Wiley; 2001. [Link]
15. Richardson CD, Scheid A, Choppin PW. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the Fl or HA2 viral polypeptides. Virology. 1980;105(1):205-22. [Link] [DOI:10.1016/0042-6822(80)90168-3]
16. Kapczynski DR, King DJ. Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine. 2005;23(26):3424-33. [Link] [DOI:10.1016/j.vaccine.2005.01.140]
17. Boursnell MEG, Green PF, Samson ACR, Campbell JIA, Deuter A, Peters RW, et al. A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge NDV. Virology. 1990;178(1):297-300. [Link] [DOI:10.1016/0042-6822(90)90408-J]
18. Edbauer Ch, Weinberg R, Taylor J, Rey-Senelonge A, Bouquet JF, Desmettre P, et al. Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virology. 1990;179(2):901-4. [Link] [DOI:10.1016/0042-6822(90)90165-N]
19. Xiao S, Nayak B, Samuel A, Paldurai A, Kanabagattebasavarajappa M, Prajitno TY, et al. Generation by reverse genetics of an effective, stable, live-attenuated Newcastle disease virus vaccine based on a currently circulating, highly virulent Indonesian strain. PloS one. 2012;7(12):e52751. [Link] [DOI:10.1371/journal.pone.0052751]
20. Armstrong EP. Economic benefits and costs associated with target vaccinations. J Manag Care Pharm. 2007;13(7 Supp B):S12-5. [Link] [DOI:10.18553/jmcp.2007.13.s7-b.12]
21. Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007;20(3):489-510. [Link] [DOI:10.1128/CMR.00005-07]
22. Taylor J, Edbauer C, Rey-Senelonge A, Bouquet JF, Norton E, Goebel S, et al. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J Virol. 1990;64(4):1441-50. [Link]
23. Meulemans G, Letellier C, Gonze M, Carlier MC, Burny A. Newcastle disease virus f glycoprotein expressed from a recombinant vaccinia virus vector protects chickens against live‐virus challenge. Avian Pathol. 1988;17(4):821-7. [Link] [DOI:10.1080/03079458808436504]
24. Motamedi MJ, Amani J, Shahsavandi Sh, Salmanian AH. In silico design of multimeric HN-F antigen as a highly immunogenic peptide vaccine against Newcastle disease virus. Int J Pept Res Ther. 2014;20(2):179-94. [Link] [DOI:10.1007/s10989-013-9380-x]
25. Alexander DJ. Newcastle disease and other avian paramyxoviruses. Rev Sci Tech. 2000;19(2):443-55. [Link] [DOI:10.20506/rst.19.2.1231]
26. Seal BS, King DJ, Sellers HS. The avian response to Newcastle disease virus. Dev Comp Immunol. 2000;24(2-3):257-68. [Link] [DOI:10.1016/S0145-305X(99)00077-4]
27. Rai M, Padh H. Expression systems for production of heterologous proteins. Curr Sci. 2001;80(9):1121-8. [Link]
28. Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012;30(5):1102-7. [Link] [DOI:10.1016/j.biotechadv.2011.09.013]
29. Kamionka M. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol. 2011;12(2):268-74. [Link] [DOI:10.2174/138920111794295693]
30. Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113-28. [Link] [DOI:10.1016/j.jbiotec.2004.08.004]
31. Silva KR, Goncalves MCM, De Oliveira ES, Fernando FS, Montassier MDFS, Fernandes CC, et al. Cloning and expression of the nucleoprotein gene (NP) of Newcastle Disease Virus (NDV) in Escherichia coli for immunodiagnosis application. Int J Poult Sci. 2014;13(8):473-9. [Link] [DOI:10.3923/ijps.2014.473.479]
32. Iram N, Salahuddin Shah M, Ismat F, Habib M, Iqbal M, Hasnain SS, et al. Heterologous expression, characterization and evaluation of the matrix protein from Newcastle disease virus as a target for antiviral therapies. Appl Microbiol Biotechnol. 2014;98(4):1691-701. [Link] [DOI:10.1007/s00253-013-5043-2]
33. Carrió MM, Villaverde A. Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett. 2001;489(1):29-33. [Link] [DOI:10.1016/S0014-5793(01)02073-7]
34. Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact. 2004;3(1):11. [Link] [DOI:10.1186/1475-2859-3-11]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.