Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 69-78 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bishal H, Tavanaie M, Mahmudi Gevari ‎ A. Biodegradability Modification of Synthetic Polyamide 6 Fibers ‎via in-Situ Melt Blending with Recycled Poly‌ ‌‎(Lactic) Acid Plastic ‎Food Container Flakes during the Melt Spinning Process. JMBS. 2018; 9 (1) :69-78
URL: http://biot.modares.ac.ir/article-22-14019-en.html
1- Textile Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran
2- Textile Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran, Textile Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran , ma.tavanaie@yazd.ac.ir
3- Textile Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran, yazd
Abstract:   (3103 Views)
Aims: Nylon or polyamide is one of the most used and most important polymers used in the plastic and fiber industries of the world. For this reason, its use is less sensitive to the properties of its very poor biodegradability. Therefore, the aim of the present study was the biodegradability modification of synthetic polyamide 6 (pa6) fibers via in-situ melt blending with recycled poly (lactic) acid plastic food container flakes (r-PLA) during the melt spinning process.
Materials & Methods: In this experimental study, polyamide chips 6 in textile industry and Poly (Lactic) Acid Plastic Disposable Container Flakes were used. The weight loss, mechanical properties, and surface morphology variations of pure and modified fiber samples after soil burial test were analyzed for comprehensive biodegradability study of the modified fiber samples. Data were analyzed by One-Way Analysis of Variance.
Findings: The mechanical tests performed on Norris fiber showed successful production of blend fibers with the percentages of 5, 10, 20, 30, and 40 of the components of r-PLA and A 50% r-PLA fiber sample did not have acceptable mechanical properties. The changes of PA6/r-PLA blended fibers with a significant increase in r-PLA component in the PA6 substrate were significant.
Conclusion: The blend modified of PA6 and Poly (Lactic) recycled samples, with a composition containing from 5% to 40% of the dispersed recycled poly-lactic acid fraction have successfully melt spinning capability. By increasing the percentage of recycled poly lactic acid in the blended fibers, the mechanical properties show improvement in samples of 5% and 10% by weight and show reduction in higher percentages. Iincreasing the biodegradability of modified PA 6 fibers with increasing the r-PLA content is obviously confirmed.
Full-Text [PDF 2040 kb]   (1596 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/04/3 | Accepted: 2018/01/27 | Published: 2018/05/22

References
1. Negoro S. Biodegradation of nylon oligomers. App Microbiol Biotechnol. 2000;54(4):461-6.‎ [Link] [DOI:10.1007/s002530000434]
2. Rodnik E. Compostable polymer materials. Amsterdam: Elsevier; 2008. ‎ [Link]
3. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog ‎Polym Sci. 2002;27(6):1123-63.‎ [Link]
4. Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. ‎Degrad Stab. 1998;59(1-3):145-52.‎ [Link] [DOI:10.1016/S0141-3910(97)00148-1]
5. Shimao M. Biodegradation of plastics. Curr Opin Biotechnol. 2001;12(3):242-7.‎ [Link] [DOI:10.1016/S0958-1669(00)00206-8]
6. Tavanaei MA, Hadadi H. Fiber engineering. Tehran: Sharh; 2012. [Persian]‎ [Link]
7. Vaverková M, Toman F, Adamcová D, Kotovicová J. Study of the biodegrability of ‎degradable/biodegradable plastic material in a controlled composting environment. Ecol Chem Eng S. ‎‎2012;19(3):347-58.‎ [Link]
8. Sudhakar M, Andrew A, Murali M R, Manju M, Amar M. Biodegradability and compostability of ‎lignocellulosic based composite materials. Renew Mater. 2013;1(4):253-72.‎ [Link] [DOI:10.7569/JRM.2013.634117]
9. Seah MP. Summary of ISO/TC 201 standard: XXXIII, ISO 18115:2001/Amd, 2:2007-surface chemical ‎analysis-vocabulary-amendment 2. Surf Interface Anal. 2008;40(11):1500-2.‎ [Link] [DOI:10.1002/sia.2951]
10. Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. J Polym Environ. ‎‎2007;15(2):125-50.‎ [Link] [DOI:10.1007/s10924-007-0053-8]
11. Delort AM, Combourieu N. In situ 1H NMR Study of the biodegradation of xenobiotics: Application to ‎heterocyclic compounds. J Ind Microbiol Biotechnol. 2001;26(1-2):2-8.‎ [Link] [DOI:10.1038/sj.jim.7000022]
12. Doi Y, Fukuda K, editors. Biodegradable plastics and polymers. Amsterdam: Elsevier Science; 1994.‎ [Link]
13. Lee K. Enhanced production of lactic acid by an adapted strain of Lactobacillus delbrueckii subsp, Lactis. ‎World J Microbiol Biotechnol. 2007;23(9):1317-20.‎ [Link] [DOI:10.1007/s11274-007-9358-y]
14. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. ‎‎2004;4(9):835-64.‎ [Link] [DOI:10.1002/mabi.200400043]
15. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview. Prog Polym Sci. 2007;32(4):455-82.‎ [Link] [DOI:10.1016/j.progpolymsci.2007.01.005]
16. Tsuji H. Degradation of poly(lactide)-based biodegradable materials. In: Albertov LB, editor. Polymer ‎degradation and stability research developments. New York: Nova Science Publishers; 2007.‎ [Link]
17. Yu L. Biodegradable polymer blends and composites from renewable resources. New York: John Wiley & ‎Sons; 2009.‎ [Link]
18. Wang Y, Hillmyer MA. Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization ‎of poly(L-lactide)/polyethylene blends. J Polym Sci Part A Polym Chem. 2001;39(16):2755-66.‎ [Link] [DOI:10.1002/pola.1254]
19. Tavanaie MA. Melt recycling of poly(lactic acid) plastic wastes to produce biodegradable fibers. Polym ‎Plast Technol Eng. 2014;53(7):742-51. ‎ [Link]
20. Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S. Effect of chain extenders on thermal and ‎mechanical properties of poly (lactic acid) at high processing temperatures: Potential application in ‎PLA/Polyamide 6 blend. Polym Degrad Stab. 2014;108:232-40.‎ [Link] [DOI:10.1016/j.polymdegradstab.2014.04.019]
21. Feng F, Ye L. Structure and property of polylactide/polyamide blends. J Macromol Sci Part B. ‎‎2010;49:6:1117-27.‎ [Link] [DOI:10.1080/00222341003609179]
22. Kucharczyk P, Sedlarik V, Miskolczi N, Szakacs H, Kitano T. Properties enhancement of partially ‎biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-‎anhydride- amide/imide-based additives. J Reinf Plast Compos. 2012;31(3):189-202.‎ [Link] [DOI:10.1177/0731684411434150]
23. Stoclet G, Seguela R, Lefebvre JM. Morphology, thermal behavior and mechanical properties of binary ‎blends of compatible biosourced polymers: Polylactide/ polyamide11. Polymer. 2011;52(6):1417-25.‎ [Link] [DOI:10.1016/j.polymer.2011.02.002]
24. Zhang W, Chen L, Zhang Z. Surprising shape-memory effect of polylactide resulted from toughening by ‎polyamide elastomer. Polymer. 2009;50(5):1311-5. ‎ [Link] [DOI:10.1016/j.polymer.2009.01.032]
25. Wang YL, Hu X, Li H, Ji X, Li ZM. Polyamide-6/poly (lactic acid) blends compatibilized by the maleic ‎anhydride grafted polyethylene-octene elastomer. Polym Plast Technol Eng. 2010;49(12):1241-6.‎ [Link] [DOI:10.1080/03602559.2010.496418]
26. Wang YL, Hu X, Li H, Ji X, Li ZM. Polyamide-6/poly(lactic acid) blends compatibilized by the maleic ‎anhydride grafted polyethylene-octene elastomer. Polym Plast Technol Eng. 2010;49(12):1241-6.‎ [Link] [DOI:10.1080/03602559.2010.496418]
27. Tavanaie MA, Mahmudi A. Green engineered polypropylene biodegradable fibers through blending with ‎recycled poly(lactic) acid plastic wastes. Polym Plast Technol Eng. 2014;53(14):1506-17.‎ [Link] [DOI:10.1080/03602559.2014.910524]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author