Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 179-185 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghamiri S, Akbari-Karadeh S, Tajer Mohammad Ghazvini P, Ghorbanzadeh Mashkani S. Effect of Temperature and Reducing Agent on Labeling of Magnetosomes with 188Re and Biodistribution of Labeled Magnetic Nanoparticles. JMBS 2018; 9 (2) :179-185
URL: http://biot.modares.ac.ir/article-22-14029-en.html
1- Medical Radiation Department, Nuclear Engineering Faculty, Shahid Beheshti University, Tehran, Iran
2- Materials & Nuclear Fuel Reaserch School, Nuclear Science & Technology Research Institute, Tehran, Iran, Materials & Nuclear Fuel Research School, Nuclear Science & Technology Research Institute, North Karegar Street, Tehran, Iran. , ptajer@aeoi.org.ir
3- Nuclear Science & Technology Research Institute, Tehran, Iran.
Abstract:   (10280 Views)
Aims: In recent years, magnetotactic bacteria and their magnetic nanoparticles (magnetosomes) were considered in different fields of science, including medicine, biotechnology, and nanobiotechnology due to their novel and unique magnetic properties. The present study was performed with the aim of evaluating the effect of temperature and reducing agent on labeling of magnetosomes with 188Re and biodistribution of labeled magnetic nanoparticles.
Materials and Methods: In this experimental study, Alphaproteobacterium MTB-KTN90 and sonication extraction method were used for the extraction of magnetic nanoparticles. After bacterial lysis, the magnetic nanoparticles produced by electron microscope were investigated and tin (II) chloride, as reducing agent, was used to check the labeling efficiency and rats were used to examine the biodistribution of the labeled magnetosomes.
Findings: The highest efficiency in magnetosome labeling experiments was 11100kBq in the initial activity, which decreased with increasing activity. The increase in temperature did not have much effect on increasing the labeling efficiency. The labeling value in the absence of a reducing agent was 721.5kBq, while at a concentration of 2mg of this agent, the labeling value increased to 10745.91kBq. After the injection of magnetosomes through the sublingual vein of the rat, the magnetosomes accumulated in the liver.
Conclusion: Magnetosomes extracted from Alphaproteobacterium MTB-KTN90 have a high potential for labeling by 188Re. Increasing temperature does not affect the labeling efficiency, but tin (II) chloride is a very important factor in optimizing the labeling efficiency, and the highest accumulation of magnetosomes labeled with 188Re after injection is in the liver of the rat.
Full-Text [PDF 462 kb]   (3412 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/08/21 | Accepted: 2017/04/10 | Published: 2018/06/21

References
1. Sun J, Li Y, Liang XJ, Wang PC. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. J Nanomater. 2011;2011:469031. [Link]
2. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol. 2004;2(3):217-30. [Link] [DOI:10.1038/nrmicro842]
3. Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108(11):4875-98. [Link] [DOI:10.1021/cr078258w]
4. Tajer Mohammad Ghazvini P, Kasra Kermanshahi R, Nozad Golikand A, Sadeghizadeh M. Isolation and characterization of a novel magnetotactic bacterium from Iran: Iron uptake and producing magnetic nanoparticles in alphaproteobacterium MTB-KTN90. Jundishapur J Microbiol. 2014;7(9):e19343. [Link] [DOI:10.5812/jjm.19343]
5. Matsunaga T, Arakaki A. Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D, editor. Magnetoreception and magnetosomes in bacteria. Heidelberg: Springer Science & Business Media; 2006. pp. 227-54. [Link]
6. Xie J, Chen K, Chen X. Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res. 2009;2(4):261-78. [Link] [DOI:10.1007/s12274-009-9025-8]
7. Banerjee IA, Yu L, Shima M, Yoshino T, Takeyama H, Matsunaga T, et al. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals. Adv Mater. 2005;17(9):1128-31. [Link] [DOI:10.1002/adma.200400724]
8. Hartung A, Lisy MR, Herrmann KH, Hilger I, Schüler D, Lang C, et al. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging. J Magn Magn Mater. 2007;311(1):454-9. [Link] [DOI:10.1016/j.jmmm.2006.10.1153]
9. Hergt R, Dutz S. Magnetic particle hyperthermia - biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311(1):187-92. [Link] [DOI:10.1016/j.jmmm.2006.10.1156]
10. Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater. 2005;293(1):80-6. [Link] [DOI:10.1016/j.jmmm.2005.01.047]
11. Sun JB, Duan JH, Dai SL, Ren J, Zhang YD, Tian JS, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett. 2007;258(1):109-17. [Link] [DOI:10.1016/j.canlet.2007.08.018]
12. Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of insulin using antibody protein a-bacterial magnetic particle complexes. Anal Chem. 2000;72(15):3518-22. [Link] [DOI:10.1021/ac9912505]
13. Tanaka T, Takeda H, Kokuryu Y, Matsunaga T. Spontaneous integration of transmembrane peptides into a bacterial magnetic particle membrane and its application to display of useful proteins. Anal Chem. 2004;76(13):3764-9. [Link] [DOI:10.1021/ac035361m]
14. Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem. 2004;76(21):6207-13. [Link] [DOI:10.1021/ac0493727]
15. Tajer Mohammad Ghazvini P. Isolation of magnetic nanoparticles producer bacteria for evaluation in bioremediation processes [Dissertation]. Tehran: Alzahra University; 2014. [Persian] [Link]
16. Neacsu B, Cimpeanu C, Barna C. Radionuclidic purity - an essential parameter in quality control of radiopharmaceuticals. Romanian Rep Phys. 2013;65(1):155-67. [Link]
17. Smith BT, editor. Nuclear pharmacy concepts and applications. Yavari K, Ghannadi Maragheh M, translators. Tehran: Nuclear Science and Technology Research Center; 2011. [Persian] [Link]
18. Saha GB. Fundamentals of nuclear pharmacy. Ghannadi Maragheh M, Gholipoor Peyvandi R, Bahrami Samani A, translators. Tehran: Nuclear Science and Technology Research Center; 2008. [Persian] [Link]
19. Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: Potential benefit in systemic radiation therapy. Nanotechnol Sci Appl. 2010;3:159-70. [Link]
20. Ghannadi Maragheh M, editor. In nuclear technology. Tehran: Nuclear Science and Technology Research Institute; 2011. [Link]
21. Tajer Mohammad Ghazvini P, Kasra Kermanshahi R, Nozad Golikand A, Sadeghizadeh M. A green chemical technique for the synthesis of magnetic nanoparticles by magnetotactic bacteria. Int J Biol Biomol Agric Food Biotechnol Eng. 2013;7(2):129-32. [Link]
22. Ghorbanzadeh Mashkani S, Tajer Mohammad Ghazvini P, Nozad Golikand A, Kasra Kermanshahi R, Davarpanah MR. Synthesis of sterile and pyrogen free biogenic magnetic nanoparticles: Biotechnological potential of magnetotactic bacteria for production of nanomaterials. Int J Biol Biomol Agric Food Biotechnol Eng. 2013;7(2):133-7. [Link]
23. Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011;5(8):6279-96. [Link] [DOI:10.1021/nn201290k]
24. Grünberg K, Wawer C, Tebo BM, Schüler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol. 2001;67(10):4573-82. [Link] [DOI:10.1128/AEM.67.10.4573-4582.2001]
25. Adeli R, Ghannadi Maragheh M, Shamsaei Zafarghandi M, Bahrami Samani A, Salimi B. Production, quality control and biological evaluation of 90Y-EDTMP in rats. J Nucl Sci Technol. 2010;(52):40-3. [Persian] 28- Häfeli U, Pauer G, Failing S, Tapolsky G. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. J Magn Magn Mater. 2001;225(1-2):73-8. [Link]
26. Tsai CS, Liu WC, Chen HY, Hsu WC. Preparation and characterization of Fe3O4 magnetic nanoparticles labeled with technetium-99m pertectnetate. Appl Mech Mater. 2014;459:51-9. [Link] [DOI:10.4028/www.scientific.net/AMM.459.51]
27. Corchero JL, Villaverde A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 2009;27(8):468-76. [Link] [DOI:10.1016/j.tibtech.2009.04.003]
28. Häfeli U, Pauer G, Failing S, Tapolsky G. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. J Magn Magn Mater. 2001;225(1-2):73-8. [Link] [DOI:10.1016/S0304-8853(00)01230-0]
29. Chunfu Z, Jinquan C, Duanzhi Y, Yongxian W, Yanlin F, Jiajü T. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot. 2004;61(6):1255-9. [Link] [DOI:10.1016/j.apradiso.2004.03.114]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.