Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 53-58 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babapoura ‎ F, Yazdian ‎ F, Tabandeh ‎ F. Simulation of Gelatin, Gelatin-chitosan and Poly-caprolactone ‎Scaffolds in the Retina and Comparison of Pressure Gradient and ‎Thickness Effect on Pressure Gradient. JMBS 2018; 9 (1) :53-58
URL: http://biot.modares.ac.ir/article-22-14059-en.html
1- Life Science Engineering Department, New Sciences and Technologies Faculty, University of Tehran, Tehran, ‎Iran
2- Life Science Engineering Department, New Sciences and Technologies Faculty, University of Tehran, Tehran, ‎Iran, Life Science Engineering Department, New Sciences and Technologies Faculty, University of Tehran, Tehran, Iran , yazdian@ut.ac.ir
3- National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
Abstract:   (6023 Views)
Aims: Age-Related Macular Degeneration (AMD) is one of the biggest causes of vision loss after 50 years of age in the world. AMD disease destroys the retinal pigment cells. Retinal tissue engineering provides a suitable environment for the growth of retinal pigment epithelium cells using different scaffolds. These scaffolds may cause interior pressure changes in eyes and thus, causes disease of the separation of pigment and retinal epithelial cells. Therefore, the purpose of this study was to simulate gelatin, gelatin-chitosan and poly-caprolactone scaffolds in the retina and compare the pressure gradient and the effect of thickness on the pressure gradient.
Materials & Methods: In the present experimental study, in the first stage, three gelatin, gelatin-chitosan and poly-caprolactone scaffolds were simulated to examine the average scaffold pressure using COMSOL 5.1.1 software and Darcy law. In the next step, a gelatin-chitosan scaffold with thicknesses of 10 and 20 micron was simulated with Darcy law, to examine the effect of thickness on average pressure.
Findings: The output pressure of the gelatin scaffold was calculated as 308.800Pa Which was less than the pressure level of the caroid layer And it was less than the output pressure of other scaffolds. The average pressure of gelatin-chitosan scaffold with thicknesses of 10 and 20 micron was 1997.31 and 2003.13 respectively in the last step.
Conclusion: The gelatin scaffold produces a moderate lower pressure than the gelatin-chitosan scaffold and poly-caprolactone in the retina and it is more suitable than other scaffolds. In the simulation of gelatin-chitosan scaffold, increasing the thickness causes increased pressure and retinal impairment.
Full-Text [PDF 824 kb]   (3091 Downloads)    
Subject: Agricultural Biotechnology
Received: 2015/07/5 | Accepted: 2017/09/27 | Published: 2018/05/22

1. Grossniklaus HE, Geisert EE, Nickerson JM. Introduction to the retina. In: Fielding Hejtmancik J, Nickerson ‎JM, editors. Progress in molecular biology and translational science. Georgia: Emory University School of ‎Medicine; 2015.‎ [Link]
2. Ratnapriya R, Chew EY. Age-related macular degeneration-clinical review and genetics update. Clin Genet. ‎‎2013;84(2):160-6.‎ [Link] [DOI:10.1111/cge.12206]
3. Ehrlich R, Harris A, Kheradiya NS, Winston DM, Ciulla TA, Wirostko B. Age-related macular degeneration ‎and the aging eye. Clinical Interv Aging. 2008;3(3):473-82.‎ [Link]
4. Trese M, Regatieri CV, Young MJ. Advances in retinal tissue engineering. Materials (Basel). ‎‎2012;5(1):108-20.‎ [Link]
5. Yaji N, Yamato M, Yang J, Okano T, Hori S. Transplantation of tissue-engineered retinal pigment epithelial ‎cell sheets in a rabbit model. Biomaterials. 2009;30(5):797-803.‎ [Link] [DOI:10.1016/j.biomaterials.2008.10.045]
6. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional ‎factors. Tissue Eng. 2001;7(6):679-89.‎ [Link] [DOI:10.1089/107632701753337645]
7. Carletti E, Motta A, Migliaresi C. Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol. ‎‎2011;695:17-39.‎ [Link] [DOI:10.1007/978-1-60761-984-0_2]
8. Zayit-Soudry S, Moroz I, Loewenstein A. Retinal pigment epithelial detachment. Surv Ophthalmol. ‎‎2007;52(3):227-43.‎ [Link] [DOI:10.1016/j.survophthal.2007.02.008]
9. Maurice D, Salmon J, Zauberman H. Subretinal pressure and retinal adhesion. Exp eye Res. ‎‎1971;12(2):212-7.‎ [Link] [DOI:10.1016/0014-4835(71)90093-5]
10. Anand-Apte B, Hollyfield JG. Developmental anatomy of the retinal and choroidal vasculature. In: ‎Encyclopedia of the eye. Besharse J, Dana R, Battelle BA, Beebe D, Bex P, Bishop P, et al, editors. New York: ‎Academic Press; 2010.‎ [Link]
11. Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ. Fabrication of degradable polymer scaffolds to ‎direct the integration and differentiation of retinal progenitors. Biomaterials. 2005;26(16):3187-96.‎ [Link] [DOI:10.1016/j.biomaterials.2004.08.022]
12. Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ, et al. A microfabricated scaffold for retinal ‎progenitor cell grafting. Biomaterials. 2008;29(4):418-26.‎ [Link]
13. Redenti S, Tao S, Yang J, Gu P, Klassen H, Saigal S, et al. Retinal tissue engineering using mouse retinal ‎progenitor cells and a novel biodegradable, thin-film poly (e-caprolactone) nanowire scaffold. J Ocul Biol Dis ‎Infor. 2008;1(1):19-29.‎ [Link]
14. Whitaker S. Flow in porous media I: A theoretical derivation of Darcy's law. Transp porous media.‎ [Link]
15. Ockendon H, Ockendon JR. Viscous flow. 13th Volume. London: Cambridge University Press; 1995.‎ [Link]
16. Ochoa-Tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a ‎homogeneous fluid-I, Theoretical development. Int J Heat Mass Transf. 1995;38(14):2635-46.‎ [Link] [DOI:10.1016/0017-9310(94)00346-W]
17. Nabovati A, Llewellin EW, Sousa AC. A general model for the permeability of fibrous porous media based ‎on fluid flow simulations using the lattice Boltzmann method. Compos Part A Appl Sci Manuf. 2009;40(6-‎‎7):860-9.‎ [Link]
18. Chandler WL, Schmer G. Evaluation of a new dynamic viscometer for measuring the viscosity of whole ‎blood and plasma. Clin Chem. 1986;32(3):505-7.‎ [Link]
19. Mäepea O. Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp eye Res. ‎‎1992;54(5):731-6.‎ [Link] [DOI:10.1016/0014-4835(92)90028-Q]
20. Maurice DM. Flow of water between aqueous and vitreous compartments in the rabbit eye. Am J Physiol. ‎‎1987;252(1 Pt 2):F104-8.‎ [Link]
21. Riva C, Petrig B. Blue field entoptic phenomenon and blood velocity in the retinal capillaries. J Opt Soc ‎Am. 1980;70(10):1234-8.‎ [Link]
22. Riva CE, Grunwald JE, Sinclair SH, Petrig B. Blood velocity and volumetric flow rate in human retinal ‎vessels. Invest Ophthalmol Vis Sci. 1985;26(8):1124-32.‎ [Link]
23. Forte AE, D'Amico F, Charalambides MN, Dini D, Williams JG. Modelling and experimental ‎characterisation of the rate dependent fracture properties of gelatine gels. Food Hydrocoll. 2015;46:180-90.‎ [Link] [DOI:10.1016/j.foodhyd.2014.12.028]
24. Laurent CP, Latil P, Durville D, Rahouadj R, Geindreau C, Orgéas L, et al. Mechanical behaviour of a ‎fibrous scaffold for ligament tissue engineering: Finite elements analysis vs. X-ray tomography imaging. J ‎Mech Behav Biomed Mater. 2014;40:222-33.‎ [Link]
25. Kain HL. A new model for examining chorioretinal adhesion experimentally. Arch Ophthalmol. ‎‎1984;102(4):608-11.‎ [Link] [DOI:10.1001/archopht.1984.01040030480031]
26. Chou T, Siegel M. The mechanics of retinal detachment. [Internet]. Washington DC: PNAS; 1982. [cited ‎‎2017 May 10]. Available from: http://faculty.biomath.ucla.edu/tchou/pdffiles/blister16.‎ [Link]
27. Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL. Microfabrication of a three-dimensional ‎polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed. ‎‎2011;22(4-6):443-56.‎ [Link] [DOI:10.1163/092050610X487738]
28. Babapour F, Yazdian F, Tabandeh F. Simulation of Gelatin-Chitosan: Scaffold for retinal pigment ‎epithelium. Int J Anal Pharm Biomed Sci. 2015;4(2):164-8.‎ [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.