Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 259-265 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Paylakhi S, Ozgoli S, Paylakhi S. Introduction of GRAP Gene as Alzheimer's Disease Candidate Gene Using Microarray Data Analysis. JMBS 2018; 9 (2) :259-265
URL: http://biot.modares.ac.ir/article-22-14248-en.html
1- Control Department, Electrical & Computer Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Control Department, Electrical & Computer Engineering Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , ozgoli@modares.ac.ir
3- Ophthalmology Department, Ophthalmology Faculty, University of California, San Francisco, United States
Abstract:   (5018 Views)
Aims: One of the most important areas in medical research is the identification of disease-causing genes, which helps the identification of mechanisms underlying disease and as a result helps the early diagnosis of disease and the better treatment. In recent years, microarray technology has assisted biologists to gain a better understanding of cellular processes. To this end, the application of efficient methods in microarray data analysis is very important. The aim of this study was the introduction of GRAP Gene as Alzheimer’s disease candidate gene using microarray data analysis.
Materials and Methods: In the present bioinformatic study, which was conducted on an Alzheimer's microarray data set containing 12990 genes, 15 patients, and 16 healthy subjects, by combining Fisher, Significance Analysis of Microarray (SAM), and Particle Swarm Optimization (PSO) methods as well as Classification and Regression Tree (CART), a new method was presented for analyzing microarray gene expression data to identify genes involved in Alzheimer's incidence.
Findings: The accuracy level of the proposed method was 90.32% and the interpretation of the results from a biological point of view indicated that the proposed method has worked well; finally, the proposed method introduced 4 genes, of which, until now, 3 genes (75%) have been reported in biological studies as genes that cause Alzheimer’s disease.
Conclusion: In addition to proposing a new feature selection method for the analysis of microarray data, this study has introduced a new gene (GRAP) as a candidate gene related to Alzheimer’s disease.
Full-Text [PDF 502 kb]   (2845 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/10/25 | Accepted: 2017/12/11 | Published: 2018/06/21

1. Fakhr E, Motamed N, Habibi Rezaei M. Microarray technology. Genet 3rd Millenn. 2011;9(3):2481-8. [Persian] [Link]
2. Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics. 2008;9 Suppl 1:S13. [Link] [DOI:10.1186/1471-2164-9-S1-S13]
3. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A. 2004;101(7):2173-8. [Link] [DOI:10.1073/pnas.0308512100]
4. Mohammadi A, Saraee MH, Salehi, M. Identification of disease-causing genes using microarray data mining and Gene Ontology. BMC Med Genom. 2011;4:12. [Link] [DOI:10.1186/1755-8794-4-12]
5. Tian LP, Liu LZ, Wu FX. Identification of pseudo-periodic gene expression profiles. Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP). Athens: The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp); 2011. [Link]
6. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS'95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 4-6 Oct, 1995, Nagoya, Japan. Piscataway: IEEE; 1995. [Link] [DOI:10.1109/MHS.1995.494215]
7. Lee SK. On classification and regression trees for multiple responses and its application. J Classif. 2006;23(1):123-41. [Link] [DOI:10.1007/s00357-006-0007-1]
8. Behnampour N, Hajizadeh E, Semnani S, Zayeri F. The introduction and application of classification tree model for determination of risk factor for esophageal cancer in Golestan province. Jorjani Biomed J. 2013;1(2):38-46. [Persian] [Link]
9. Saniee Abadeh M, Mahmoodi S, Taherpour M. Applied data mining. Tehran: Niyaz Danesh; 2012. [Link]
10. Kong LN, Zuo PP, Mu L, Liu YY, Yang N. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease. Acta Pharmacol Sin. 2005;26(6):666-72. [Link] [DOI:10.1111/j.1745-7254.2005.00129.x]
11. He P, Staufenbiel M, Li R, Shen Y. Deficiency of patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice. Hum Mol Genet. 2014;23(24):6512-27. [Link] [DOI:10.1093/hmg/ddu370]
12. Rosa E, Fahnestock M. CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging. 2015;36(8):2406-13. [Link] [DOI:10.1016/j.neurobiolaging.2015.04.014]
13. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R. BisoGenet: A new tool for gene network building, visualization and analysis. BMC Bioinformatics. 2010;11:91. [Link] [DOI:10.1186/1471-2105-11-91]
14. Von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci. 2015;9:426. [Link] [DOI:10.3389/fncel.2015.00426]
15. Gri-án-Ferré C, Sarroca S, Ivanova A, Puigoriol-Illamola D, Aguado F, Camins A, et al. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY). 2016;8(4):664-84. [Link] [DOI:10.18632/aging.100906]
16. Kim H, Lee KS, Kim AK, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9(8):839-48. [Link] [DOI:10.1242/dmm.025668]
17. Kim SJ, Guerrero N, Wassef G, Xiao J, Mehta HH, Cohen P, et al. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus. Oncotarget. 2016;7(30):46899-912. [Link] [DOI:10.18632/oncotarget.10380]
18. Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNA interference silencing of the adaptor molecules ShcC and Fe65 differentially affect amyloid precursor protein processing and Abeta generation. J Biol Chem. 2007;282(7):4318-25. [Link] [DOI:10.1074/jbc.M609293200]
19. Ferrer I, Martí E. Distribution of fibroblast growth factor receptor-1 (FGFR-1) and FGFR-3 in the hippocampus of patients with Alzheimer's disease. Neurosci Lett. 1998;240(3):139-42. [Link] [DOI:10.1016/S0304-3940(97)00948-8]
20. Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J, et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem. 2006;97(5):1243-58. [Link] [DOI:10.1111/j.1471-4159.2006.03754.x]
21. Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A, et al. A common brain network links development, aging, and vulnerability to disease. PNAS. 2014;111(49):17648-53. [Link] [DOI:10.1073/pnas.1410378111]
22. Nakase T, Naus CC. Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta. 2004;1662(1-2):149-58. [Link] [DOI:10.1016/j.bbamem.2004.01.009]
23. Realmuto S, Cinturino A, Arnao V, Mazzola MA, Cupidi C, Aridon P, et al. Tumor diagnosis preceding Alzheimer's disease onset: Is there a link between cancer and Alzheimer's disease?. J Alzheimers Dis. 2012;31(1):177-82. [Link] [DOI:10.3233/JAD-2012-120184]
24. Feng GS, Ouyang YB, Hu DP, Shi ZQ, Gentz R, Ni J. Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway. J Biol Chem. 1996;271(21):12129-32. [Link] [DOI:10.1074/jbc.271.21.12129]
25. Gärtner U, Holzer M, Arendt T. Elevated expression of p21ras is an early event in Alzheimer's disease and precedes neurofibrillary degeneration. Neuroscience. 1999;91(1):1-5. [Link] [DOI:10.1016/S0306-4522(99)00059-7]
26. Démoz M, Castino R, Dragonetti A, Raiteri E, Baccino FM, Isidoro C. Transformation by oncogenic ras-p21 alters the processing and subcellular localization of the lysosomal protease cathepsin D. J Cell Biochem. 1999;73(3):370-8. https://doi.org/10.1002/(SICI)1097-4644(19990601)73:3<370::AID-JCB8>3.0.CO;2-N [Link] [DOI:10.1002/(SICI)1097-4644(19990601)73:33.0.CO;2-N]
27. Scheubert L, Luštrek M, Schmidt R, Repsilber D, Fuellen G. Tissue-based Alzheimer gene expression markers-comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets. BMC Bioinformatics. 2012;13:266. [Link] [DOI:10.1186/1471-2105-13-266]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.