Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 223-229 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alamdar N, Rasekh B, Yazdian F. The effect of Nanoparticles on the Biosurfactant production by Pseudomonas aeruginosa for Use in the Oil Industry. JMBS 2019; 10 (2) :223-229
URL: http://biot.modares.ac.ir/article-22-14571-en.html
1- Biotechnology Department, Advanced Science & Technology Faculty, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
2- Microbiology & Biotechnology Research Department, Research Institute of Petroleum Industry, Tehran, Iran, Microbiology & Biotechnology Research Department, Research Institute of Petroleum Industry, Tehran, Iran , b.rasekh@gmail.com
3- Science Engineering Department, New Sciences & Technology Faculty, Tehran University, Tehran, Iran
Abstract:   (5430 Views)
Biosurfactants are surface tension reducing compounds produced by a wide range of microorganisms. These compounds are caused to facilitate the absorption insoluble substrate by microbial cells. The aim of this study was to investigate the effects of nanoparticles of Fe/SDS on the biosurfactant production by Pseudomonas aeruginosa in culture is molasses.
For this purpose were used different concentrations of nanoparticles 1, 500 and 1000 mg/L. As a result the concentration of 1mg /L of Fe/SDS nanoparticles has the best effect on the growth of bacteria and biosurfactant production. This concentration increased 23.21% cell growth and 20.73% biosurfactant production compared with control samples. By increasing the concentration of nanoparticles reduced growth rate and biosurfactant production was observed. This indicates that the nanoparticles having negative effects of higher concentrations.
The results showed that low concentrations of nanoparticles Fe/SDS has positive effects on bacterial biosurfactant production and therefore a good alternative to chemical surfactants for use in the petroleum industry.
Full-Text [PDF 920 kb]   (3022 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/10/18 | Accepted: 2017/05/27 | Published: 2019/06/20

1. Amini F, Samadi N, Harande M, Naghdi M, Sharifan A. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa strains. Iran J Nutr Sci Food Technol. 2009;4(1):33-8. [Link]
2. Fracchia L, Cavallo M, Martinotti M, Banat IM. Biosurfactants and Bioemulsifiers Biomedical and Related Applications-Present Status and Future Potentials. In: Ghista DN. Biomedical Science, Engineering and Technology. Norderstedt: Books on Demand; 2012. pp. 325-70 [Link] [DOI:10.5772/23821]
3. Rikalovic MG, Cvijovic GG, Vrvic MM, Karadzic I. Production and characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. J Serbian Chem Soc. 2012;77(1):27-42. [Link] [DOI:10.2298/JSC110211156R]
4. Singh V. Biosurfactant-isolation, production, purification & significance. Int J Sci Res Publ. 2012;2(7). [Link]
5. Bagheri Lotfaabad T, Shahceraghi F, Shooraj F. Assessment of antibacterial capability of rhamnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur J Microbiol. 2013;6(1):29-35. [Link] [DOI:10.5812/jjm.2662]
6. Pereira J, Gudina E, Costa R, Vitorino R, Teixeira J, Coutinho J, Rodrigues L. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel. 2013;111:259-68. [Link] [DOI:10.1016/j.fuel.2013.04.040]
7. Amani H, Muller MM, Syldatk Ch, Hausmann R. Production of Microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol. 2013;170(5):1080-93. [Link] [DOI:10.1007/s12010-013-0249-4]
8. Kaskatep B, Yildiz S, Gumustas M, Ozkan SA. Biosurtactant production by Psedomonas aeroginosa in kefir and fish meal. Braz J Microbiol. 2015;46(3):855-9. [Link] [DOI:10.1590/S1517-838246320140727]
9. Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 2011;9:34. [Link] [DOI:10.1186/1477-3155-9-34]
10. Lia J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Mater Sci Eng. 2013;33(7):3909-15. [Link] [DOI:10.1016/j.msec.2013.05.026]
11. Liu J, Vipulanandan C, Cooper TF, Vipulanandan G. Effects of Fe nanoparticles on bacterial growth and biosurfactant production. J Nanopart Res. 2013;15:1405. [Link] [DOI:10.1007/s11051-012-1405-4]
12. Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol. 2014;10:14-48. [Link] [DOI:10.1186/1472-6750-14-48]
13. Fakruddin Md. Biosurfactant: Production and Application. J Pet Environ Biotechnol. 2012;3(4):124. [Link]
14. Gomathy C, Senthilkumar R. Production of Rhamnolipid boisurfactant from a marine Pseudomonas aeruginosa. Int J Res Environ Sci Technol. 2013;3(3):86-91. [Link]
15. Rosa C, Freire D, Ferraz H. Biosurfactant microfoam: Application in the removal of pollutants from soil. J Environ Chem Eng. 2015;3(1):89-94. [Link] [DOI:10.1016/j.jece.2014.12.008]
16. Rocha CA, Pedregosa AM, Laborda F. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by pseudomonas aeruginosa ATCC 55925. AMB Express 2011;1(1):9. [Link] [DOI:10.1186/2191-0855-1-9]
17. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61(1):47-64. [Link]
18. Tabatabaee A, Mazaheri M, Noohi A, Sajadian VA. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs. Iranian J Environ Health Sci Eng. 2005;2(1):6-12. [Link]
19. Sahebnazar Z, Mowla D, Karimi GH. Enhancement of Pseudomonas Aeruginosa Growth and Rhamnolipid Production Using Iron-Silica Nanoparticles in Low-Cost Medium. J Nanostructures. 2018;8(1):1:10. [Link]
20. Bagheri Lofabad T, Partovi M, Bahmaei M. Rhamnolipid biosurfactant production by Pseudomonas aeruginosa MR01 using vegetable oil refinery wastes. New Cell Mol Biotechnol J. CMBJ. 2013;3(9):91-9. [Persian] [Link]
21. Mostafapour M, Ahmady- Abchin S, Saffari M. Isolation and identification of biosurfactant-producing strains from the genus Acinetobacter spp and antibacterial effects of biosurfactant produced on some of the negative and gram-positive bacteria in vitro. New Cell Mol Biotechnol J. 2014;4(14):79-91. [Persian] [Link]
22. EL-Amine Bendaha M, Mebrek S, Mostefa N, Abdelkrim T, Ahmed Belaouni H, Bouziane A. Isolation and comparison of Rhamnolipids production in Pseudomonas aeruginosa P.B:2 and Pseudomonas fluorescens P.V:10. Open Access Sci Rep. 2012;1(12). [Link]
23. Bhawsar NA, Singh M. Isolation And Characterization Of Pseudomonas aeruginosa From Waste Soybean Oil As Biosurfactants Which Enhances Biodegradation Of Industrial Waste With Special Reference To Kosmi Dam, Betul District, (M.P.). Int J Adv Res. 2014;2(6):778-83. [Link]
24. Cristobal E, Castanon M, Martinez-Martinez RE, Rodriguez L, Marin P, Macias R, Ruiz F. Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Mater Sci Eng C. 2012;32(4):896-901. [Link] [DOI:10.1016/j.msec.2012.02.009]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.