Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 355-367 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Paknia R, Darvishzadeh R, Shahriari F, Malekzadeh S. Association analysis using SSR markers for resistance to Sclerotinia basal stem rot disease in oily sunflower (Helianthus annuus L.) under filed conditions. JMBS 2018; 9 (3) :355-367
URL: http://biot.modares.ac.ir/article-22-14615-en.html
1- Plant Biotechnology Department, Agriculture Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Plant Breeding & Biotechnology Department, Agriculture Faculty, Urmia University, Urmia, Iran, Plant Breeding & Biotechnology Department, Agriculture Faculty, Urmia University, 11 Kilometer Sero Road, Daneshgah Boulevard, Urmia, Iran. Postal Code: 5756151818 , r.darvishzadeh@urmia.ac.ir
3- Plant Biotechnology Department, Agriculture Faculty, Ferdowsi University of Mashhad, Mashhad,
Abstract:   (7071 Views)
Aims: Sunflower (Helianthus annuus L.) is mainly cultivated for the extraction of edible oil, and Sclerotinia sclerotiorum is a pathogen in sunflower fields. The aim of this study was to indetify markers associated with resistance to Sclerotnia Scleritiorum diseases in sunflower, using association analysis.
Materials and Methods: In the present experimental research, a population including 100 lines of oily sunflower was cultivated. Traits such as contamination progress after 4, 8, and 12 days, 100 seeds weight of contaminated and non-contaminated plants, contaminated and non-contaminated plant yield, 100 seeds weight loss, and yield loss were studied. The molecular profiles of germplasm were prepred with 30 microsatellite primer pairs. Genetic structure analysis of population was performed based on Bayesian model.
Findings: The highest coefficient of variation was related to the yield loss (86.41%) and weight loss (78.48%), and the lowest was contamination progression after 8 and 12 days (26.47% and 20.44%), respectively. Based on the mixed linear model (MLM), 6 microsatellite markers related to traits were identified at the level of p≤0.01. The highest number of markers was associated with contamination progression after 8 days. The P733, P807, and P1256 markers were simultaneously associated with 3 traits.
Conclusion: Four lines including RHA274, H100A-83HR4, B45-03, and Iranian line with code 28 were identified with different genetic origins and high resistance levels. According to the general linear model (GLM) and MLM, 24 and 15 SSR markers are related to the traits, respectively. The P733, P807, and P1256 markers are simultaneously associated with 3 traits.
Full-Text [PDF 800 kb]   (1422 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/10/28 | Accepted: 2017/09/16 | Published: 2018/09/22

1. Baack EJ, Whitney KD, Rieseberg LH. Hybridization and genome size evolution: Timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol. 2005;167(2):623-30. [Link] [DOI:10.1111/j.1469-8137.2005.01433.x]
2. Onemli F, Gucer T. Response to drought of some wild species of Helianthus at seedling growth stage. Helia. 2010;33(53):45-54. [Link] [DOI:10.2298/HEL1053045O]
3. Charney M. Sunflower seeds and their products. J Agric Food Inf. 2010;11(2):81-9. [Link] [DOI:10.1080/10496501003689574]
4. Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol. 1994;16(2):93-108. [Link] [DOI:10.1080/07060669409500766]
5. Masirevic S, Gulya TJ. Sclerotinia and Phomopsis - two devastating sunflower pathogens. Field Crops Res. 1992;30(3-4):271-300. [Link] [DOI:10.1016/0378-4290(92)90004-S]
6. Bolton MD, Thomma BP, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 2006;7(1):1-16. [Link] [DOI:10.1111/j.1364-3703.2005.00316.x]
7. Hahn V. Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Res. 2002;77(2-3):153-9. [Link] [DOI:10.1016/S0378-4290(02)00082-5]
8. Rönicke S, Hahn V, Friedt W. Resistance to Sclerotinia sclerotiorum of 'high oleic' sunflower inbred lines. Plant Breed. 2005;124(4):376-81. [Link] [DOI:10.1111/j.1439-0523.2005.01119.x]
9. Gulya TJ, Vick BA, Nelson BD. Sclerotinia head rot of sunflower in North Dakota: 1986 incidence, effect on yield and oil components, and sources of resistance. Plant Dis. 1989;73(6):504-7. [Link] [DOI:10.1094/PD-73-0504]
10. Carson ML. Relationship between Phoma black stem severity and yield losses in hybrid sunflower. Plant Dis. 1991;75(11):1150-3. [Link] [DOI:10.1094/PD-75-1150]
11. Kearsey MJ, Farquhar AGL. QTL analysis in plants, where are we now?. Heredity. 1998;80:137-42. [Link] [DOI:10.1046/j.1365-2540.1998.00500.x]
12. Andaya VC, Tabanao D, Maramara G, Sebastian LS. Correlation of molecular diversity with heterosis in nine lowland rice. Philipp J Crop Sci (Philippines). 1996;21(Suppl 1):4. [Link]
13. Snowdon RJ, Friedt W. Molecular markers in Brassica oilseed breeding: Current status and future possibilities. Plant Breed. 2004;123(1):1-8. [Link] [DOI:10.1111/j.1439-0523.2003.00968.x]
14. Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ. Trends in genetic and genome analyses in wheat: A review. Aust J Agric Res. 2001;52(12):1043-77. [Link] [DOI:10.1071/AR01082]
15. Buckler ES, Thornsberry JM. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol. 2002;5(2):107-11. [Link] [DOI:10.1016/S1369-5266(02)00238-8]
16. Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide SNPs. Am J Hum Genet. 2012;91(6):1011-21. [Link] [DOI:10.1016/j.ajhg.2012.10.010]
17. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21(8):2194-202. [Link] [DOI:10.1105/tpc.109.068437]
18. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: Theoretical and practical concerns. Nat Rev Genet. 2005;6(2):109-18. [Link] [DOI:10.1038/nrg1522]
19. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5(2):94-100. [Link] [DOI:10.1016/S1369-5266(02)00240-6]
20. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Genome. 2008;1(1):5-20. [Link] [DOI:10.3835/plantgenome2008.02.0089]
21. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polmorphisms associate with variation in flowering time. Nat Genet. 2001;28(3):286-9. [Link] [DOI:10.1038/90135]
22. Fusari CM, Di Rienzo JA, Troglia C, Nishinakamasu V, Moreno MV, Maringolo C, et al. Association mapping in sunflower for Sclerotinia Head Rot resistance. BMC Plant Biol. 2012;12:93. [Link] [DOI:10.1186/1471-2229-12-93]
23. Campbell MA, Fitzgerald HA, Ronald PC. Engineering pathogen resistance in crop plants. Transgenic Res. 2002;11(6):599-613. [Link] [DOI:10.1023/A:1021109509953]
24. Tang S, Yu JK, Slabaugh B, Shintani K, Knapp J. Simple sequence repeat map of the sunflower genome. Theor Appl Genet. 2002;105(8):1124-36. [Link] [DOI:10.1007/s00122-002-0989-y]
25. Paniego N, Echaide M, Mu-oz M, Fernández L, Torales S, Faccio P, et al. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome. 2002;45(1):34-43. [Link] [DOI:10.1139/g01-120]
26. Poormohammad Kiani S, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet. 2007;114(2):193-207. [Link] [DOI:10.1007/s00122-006-0419-7]
27. Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version II. Plant Mol Biol Report. 1983;1(4):19-21. [Link] [DOI:10.1007/BF02712670]
28. Kholghi M, Darvishzadeh R, Bernousi I, Pirzad A, Laurentin H. Assessment of genomic diversity among and within Iranian confectionary sunflower (Helianthus annuus L.) populations by using simple sequence repeat markers. Acta Agric Scand Sect B Soil Plant Sci. 2012;62(6):488-98. [Link]
29. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of human populations. Science. 2002;298(5602):2381-5. [Link] [DOI:10.1126/science.1078311]
30. Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, et al. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet. 2011;122(7):1281-91. [Link] [DOI:10.1007/s00122-011-1530-y]
31. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol Ecol. 2005;14(8):2611-20. [Link] [DOI:10.1111/j.1365-294X.2005.02553.x]
32. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633-5. [Link] [DOI:10.1093/bioinformatics/btm308]
33. Iqbal A, Sadaqat HA, Khan AS, Amjad M. Identification of sunflower (Helianthus annuus, Asteraceae) hybrids using simple-sequence repeat markers. Genet Mol Res. 2011;10(1):102-6. [Link] [DOI:10.4238/vol10-1gmr918]
34. Kholghi M, Bernousi I, Darvishzadeh R, Pirzad AR, Hatami Maleki H. Collection, evaluation and classification of Iranian confectionary sunflower (Helianthus annuus L.) populations using multivariate statistical techniques. Afr J Biotechnol. 2011;10(28):5444-51. [Link]
35. Mohanasundaram K, Manivannan N, Vindhiya Varman P. Combining ability analysis for seed yield and its components in sunflower (Helianthus annuus L.). Electron J Plant Breed. 2010;1(4):864-8. [Link]
36. Singh SB, Lebana KS. Correlation and path analysis in sunflower. Crop Improv.1990;17(1):49-53. [Link]
37. Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006;172(2):1165-77. [Link] [DOI:10.1534/genetics.105.044586]
38. Liu A, Burke JM. Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics. 2006;173(1):321-30 [Link] [DOI:10.1534/genetics.105.051110]
39. Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, et al. Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics. 2007;177(1):457-68. [Link] [DOI:10.1534/genetics.107.074054]
40. Al-Maskri AY, Sajjad M, Khan SH. Association mapping: A step forward to discovering new alleles for crop improvement. Int J Agric Biol. 2012;14(1):153-60. [Link]
41. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol. 2005;57(4):461-85. [Link] [DOI:10.1007/s11103-005-0257-z]
42. Oraguzie NC, Wilcox PL, Rikkerink EHA, Nihal De Silva H. Linkage disequilibrium. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, Nihal De Silva H, editors. Association mapping in plants. Heidelberg: Springer Science & Business Media; 2007. pp. 11-39. https://doi.org/10.1007/978-0-387-36011-9 [Link] [DOI:10.1007/978-0-387-36011-9_2]
43. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: Models and data. Am J Hum Genet. 2001;69(1):1-14. [Link] [DOI:10.1086/321275]
44. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001;98(16):9161-6. [Link] [DOI:10.1073/pnas.151244298]
45. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256-61. [Link] [DOI:10.1038/22307]
46. Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, et al. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biol. 2008;8:2. [Link] [DOI:10.1186/1471-2229-8-2]
47. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M. Mapping QTL controlling yield and yield components in a spring barley (Hordeum valgare L.) cross using marker regression. Mol Breed. 1997;3(1):29-38. [Link] [DOI:10.1023/A:1009648220852]
48. Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, et al. Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci. 2003;43(1):367-87. [Link] [DOI:10.2135/cropsci2003.3670]
49. Filippi CV, Aguirre N, Rivas JG, Zubrzycki J, Puebla A, Cordes D, et al. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol. 2015;15:52. [Link] [DOI:10.1186/s12870-014-0360-x]
50. Huang HC. Screening sunflower for resistance to Sclerotinia wilt. Plant Pathol Bull. 2002;11:15-8. [Link]
51. Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, et al. Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology. 2008;98(8):926-31. [Link] [DOI:10.1094/PHYTO-98-8-0926]
52. Talukder ZI, Hulke BS, Qi L, Scheffler BE, Pegadaraju V, McPhee K, et al. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs. Theor Appl Genet. 2014;127(1):193-209. [Link] [DOI:10.1007/s00122-013-2210-x]
53. Guo X, Stotz HU. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact. 2007;20(11):1384-95. [Link] [DOI:10.1094/MPMI-20-11-1384]
54. Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L, Llorente F, et al. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disase resistance. Plant Cell. 2007;19(3):890-903. [Link] [DOI:10.1105/tpc.106.048058]
55. Micic Z, Hahn V, Bauer E, Schön CC, Knapp SJ, Tang S, et al. QTL mapping of Sclerotinia midstalk-rot resistance in sunflower. Theor Appl Genet. 2004;109(7):1474-84. [Link] [DOI:10.1007/s00122-004-1764-z]
56. Würschum T, Anyanga WO, Hahn V. Inheritance of Sclerotinia midstalk rot resistance in elite sunflower breeding germplasm. Helia. 2014;37(61):193-203. [Link] [DOI:10.1515/helia-2014-0019]
57. Darvishzadeh R. Association of SSR markers with partial resistance to Sclerotinia sclerotiorum isolates in sunflower (Helianthus annuus L.). Aust J Crop Sci. 2012;6(2):276-82. [Link]
58. Vanitha J, Manivannan N, Chandirakala R. Qualitative trait loci analysis for seed yield and component traits in sunflower. Afr J Biotechnol. 2014;13(6):754-61. [Link] [DOI:10.5897/AJB2013.12325]
59. Inostroza L, Del Pozo A, Matus I, Castillo D, Hayes P, Machado S, et al. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed. 2009;23(3):365-76. [Link] [DOI:10.1007/s11032-008-9239-6]
60. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 2005;1(5):e60. .eor [Link] [DOI:10.1371/journal.pgen.0010060]
61. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, et al. Association mapping for grain quality in a diverse sorghum collection. Plant Genome. 2012;5(3):126-35. [Link] [DOI:10.3835/plantgenome2012.07.0016]
62. Liu L, Wang L, Yao J, Zheng Y, Zhao C. Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol Plant Breed. 2010;1(5):1-10. [Link] [DOI:10.5376/mpb.2010.01.0005]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.