Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 313-319 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S, Ahamdi E, Borghei Y. Design and Synthesis of DNA-Templated Silver Nanoclusters for Recognition of microRNA-103. JMBS 2019; 10 (2) :313-319
URL: http://biot.modares.ac.ir/article-22-14640-en.html
1- Life Science Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran, New Sciences & Technologies Faculty, North Kargar Street, Tehran, Iran. , Hosseini_m@ut.ac.ir
2- Life Science Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran
Abstract:   (3213 Views)
MicroRNAs (miRNAs) are single-stranded RNAs that play key roles in cellular disorders or disease diagnosis. Thus the method for sensitive and selective detection of miRNAs is imperative to clinical diagnosis. Recently it has witnessed the rapid development of Metal Nanocluster-Based fluorescent probe design and its successful applications in detecting various targets, such as ssDNA, miRNA and Metal Ions. The DNA scaffolded Metal nanoclusters display excellent photostability, subnanometer size, nontoxicity, biocompatibility and thus well-suited as a fluorescent probe for biochemical applications. Here we develop a DNA/Metal Nanoclusters (MNCs)-based turn-on fluorescence method in the presence of target microRNAs as a potential biomarker for screening cancer. DNA scaffold Metal nanocluster was fabricated by a one-pot wet-chemical strategy and characterized by TEM and DLS techniques. This nanobisensor had a detection limit of 0.64pM. Conclusion, this nanobiosensors could become a potential alternative tools for detection of miRNAs in biological samples and useful in biomedical research and early clinical diagnosis.
Full-Text [PDF 922 kb]   (1210 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/11/22 | Accepted: 2018/01/4 | Published: 2019/06/20

1. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999-3004. [Link] [DOI:10.1073/pnas.0307323101]
2. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259-69. [Link] [DOI:10.1038/nrc1840]
3. Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl Mater Interfaces. 2015;7(4):2979-85. [Link] [DOI:10.1021/am508690x]
4. Vaisocherová H, Šípová H, Víšová I, Bocková M, Špringer T, Ermini ML, et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron. 2015;70:226-31. [Link] [DOI:10.1016/j.bios.2015.03.038]
5. Yuan Z, Chen YC, Li HW, Chang HT. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun (Camb). 2014;50(69):9800-15. [Link] [DOI:10.1039/C4CC02981J]
6. Walczak S, Morishita K, Ahmed M, Liu J. Towards understanding of poly-guanine activated fluorescent silver nanoclusters. Nanotechnology. 2014;25(15):155501. [Link] [DOI:10.1088/0957-4484/25/15/155501]
7. Zhu Y, Hu XC, Shi S, Gao RR, Huang HL, Zhu YY, et al. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens Bioelectron. 2016;79:205-12. [Link] [DOI:10.1016/j.bios.2015.12.015]
8. Motevali Zade Ardakani A, Boromand M .Cancer and prevention ways. Tehran: Gooya House of Art and Culture; 2013. [Persian] [Link]
9. Taherian H, Tafvizi F, Tahmasebi Fard ZT, Abdirad A. Lack of association between human papillomavirus infection and colorectal cancer. Przegla̜d Gastroenterologiczny. 2014;9(5):280-4. [Link] [DOI:10.5114/pg.2014.46163]
10. Wagner PD, Verma M, Srivastava S. Challenges for biomarkers in cancer detection. Ann N Y Acad Sci. 2004;1022:9-16. [Link] [DOI:10.1196/annals.1318.003]
11. Wu X, Xu X, Li S, Wu S, Chen R, Jiang Q, et al. Identification and validation of potential biomarkers for the detection of dysregulated microRNA by qPCR in patients with colorectal adenocarcinoma. PLoS One. 2015;10(3):e0120024. [Link] [DOI:10.1371/journal.pone.0120024]
12. Wang S, Xiang J, Li Z, Lu S, Hu J, Gao X, et al. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer. 2015;136(1):152-61. [Link] [DOI:10.1002/ijc.28136]
13. Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, Barlati S, et al. The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS One. 2011;6(5):e20038. [Link] [DOI:10.1371/journal.pone.0020038]
14. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc. 2008;130(15):5038-9. [Link] [DOI:10.1021/ja8005644]
15. Hosseini M, Akbari A, Ganjali MR, Dadmehr M, Rezayan AH. A novel label-free microRNA-155 detection on the basis of fluorescent silver nanoclusters. J Fluoresc. 2015;25(4):925-9. [Link] [DOI:10.1007/s10895-015-1574-5]
16. Yang X, Gan L, Han L, Wang E, Wang J. High-yield synthesis of silver nanoclusters protected by DNA monomers and DFT prediction of their photoluminescence properties. Angew Chem Int Ed Engl. 2013;52(7):2022-6 [Link] [DOI:10.1002/anie.201205929]
17. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: Function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207-33. [Link] [DOI:10.1021/cr300362f]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.