Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 321-327 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi S, Manaffar R, Bagheri A. Characterization of Physiological, Morphological and Optimum Growth Rate of Saccharomyces Strains Isolated from Intestinal Flora of Domestic Rain Bow Trout Fish from Urmia City. JMBS 2019; 10 (2) :321-327
URL: http://biot.modares.ac.ir/article-22-14815-en.html
1- Urmia Lake Research Institute, Urmia University, Urmia, Iran, Urmia Lake Research Institute, Urmia University, Shahid Beheshti Street, Urmia, Iran. , S.rahimi888@yahoo.com
2- Urmia Lake Research Institute, Urmia University, Urmia, Iran
Abstract:   (4886 Views)
Saccharomyces yeast genus has a wide application in biotechnology that several studies on this subject are performed. They have also known as a dietary supplement in breeding all kinds of creatures in particular for aquatics. Species of this genus are considered as probiotics, as well as a lot of beneficial effects on growth are creatures and Yeasts can be cultured in a variety of waste and cheap substrates, including hydrocarbons and petroleum. So finding an Appropriate and inexpensive culture media for optimal growth of yeast is important. In the present study, along with the study of Saccharomyces species diversity as intestinal flora of domestic rainbow trout flora, optimum growth conditions the strains of Saccharomyces cerevisiae was studied in different culture media as YPD, YPAD, YPG, YPAC, and DM. This research not only emphasized the diversity of Saccharomyces cerevisiae strains as an intestinal flora in domestic fishes, but also revealed the optimum growth of yeasts in YPAD media.
Full-Text [PDF 979 kb]   (3408 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2015/03/22 | Published: 2019/07/15

1. Delgado JF, Sceni P, Peltzer MA. Salvay AG, De La Osa O, Wagner GR. Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innovative Food Sci Emerg Technol. 2016;36. 83-91. [Link] [DOI:10.1016/j.ifset.2016.06.002]
2. Mattiazzi M, Petrovič U, Križaj I. Yeast as a model eukaryote in toxinology: A functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon. 2012;60(4):558-71. [Link] [DOI:10.1016/j.toxicon.2012.03.014]
3. Siwicki AK, Anderson DP, Rumsey GL. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol. 1994;41(1-2):125-39. [Link] [DOI:10.1016/0165-2427(94)90062-0]
4. Sohrabvandi S, Mousavi SM, Razavi SH, Malganji Sh, Khosravi Darani K, Mortazavian SA. The effect of Saccharomyces strain and fermentation conditions on production of Ma-al-Shaeer. Iran J Nutr Sci Food Technol. 2013;8(3):179-87. [Persian] [Link]
5. Mohammadi GR, Mohri M, Ahmadi A. Effect of probiotic (Saccharomyces cerevisiae CNCM I-1079) on blood parameters, growth and health of neonatal Holstein calves. Iran J Anim Sci Res. 2010;2(1):19-32. [Persian] [Link]
6. Gatesoupe FJ. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture. 2007;267(1-4):20-30. [Link] [DOI:10.1016/j.aquaculture.2007.01.005]
7. Andlid T, Juárez RV, Gustafsson L. Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microb Ecol. 1995;30(3):321-34. [Link] [DOI:10.1007/BF00171938]
8. Vázquez-Juárez R, Andlid T, Gustafsson L. Cell surface hydrophobicity and its relation to adhesion of yeasts isolated from fish gut. Colloids Surf B Biointerfaces. 1994;2(1-3):199-208. [Link] [DOI:10.1016/0927-7765(94)80035-9]
9. Pozo-Dengra J, Martínez-Rodríguez S, Martínez-Gómez AI, Heras-Vázquez FJL, Rodríguez-Vico F, Clemente-Jiménez JM. Screening of autolytic yeast strains for production of l-amino acids. Enzym Microb Technol. 2006;40(1):46-50. [Link] [DOI:10.1016/j.enzmictec.2005.10.036]
10. Oura E. Effect of aeration intensity on the biochemical composition of baker's yeast. I. Factors affecting the type of metabolism. Biotechnol Bioeng. 1974;16(9):1197-212. [Link] [DOI:10.1002/bit.260160905]
11. Woehrer W, Roehr M. Regulatory aspects of bakers' yeast metabolism in aerobic fed-batch cultures. Biotechnol Bioeng. 1981;23(3):567-81. [Link] [DOI:10.1002/bit.260230308]
12. Aksu Z, Dönmez G. Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem. 2005;40(7):2443-54. [Link] [DOI:10.1016/j.procbio.2004.09.013]
13. Skountzou P, Soupioni M, Bekatorou A. Lead (II) uptake during baker's yeast production by aerobic fermentation of molasses. Process Biochem. 2003;38(10):1479-82. [Link] [DOI:10.1016/S0032-9592(03)00023-2]
14. Arshad M, Khan ZM, Khalil-ur-Rehman, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47(5):410-4. [Link] [DOI:10.1111/j.1472-765X.2008.02446.x]
15. Xandé X, Archimède H, Gourdine JL, Anais C, Renaudeau D. Effects of the level of sugarcane molasses on growth and carcass performance of Caribbean growing pigs reared under a ground sugarcane stalks feeding system. Trop Anim Health Prod. 2010;42(1):13-20. [Link] [DOI:10.1007/s11250-009-9379-7]
16. Vu VH, Kim K. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor. J Microbiol Biotechnol. 2009;19(12):1603-11. [Link] [DOI:10.4014/jmb.0907.07027]
17. Beiroti A, Hosseini SN. Production of baker's yeast using date juice. Sheng Wu Gong Cheng Xue Bao. 2007;23(4):746-50. [Link]
18. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425-36. [Link]
19. Behzadi P, Behzadi E. Apoptosis- triggering effects: UVB-irradiation and Saccharomyces cerevisiae. Maedica (Buchar). 2012;7(4):315-8. [Link]
20. Bagheri A, Manaffar R, Rahimi S. First report of Kazachstania sp. intestinal flora of cultured Rainbow trout. J Mar Sci Technol. 2016;14(4):65-74. [Persian] [Link]
21. Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ. Influence of the diet on the microbial diversity of faecal andgastrointestinal contents in gilthead sea bream (Sparus aurata) andintestinal contents in gold¢sh (Carassius auratus). FEMS Microbiol Ecol. 2011;78(2):285-96. [Link] [DOI:10.1111/j.1574-6941.2011.01155.x]
22. Kellogg JA, Bankert DA, Chaturvedi V. Variation in Microbial Identification System accuracy for yeast identification depending on commercial source of Sabouraud dextrose agar. J Clin Microbiol. 1999;37(6):2080-3 [Link]
23. Beekwilder J, vanRossu HM, Koopman F. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechnol. 2014;192(Part B):383-92. [Link] [DOI:10.1016/j.jbiotec.2013.12.016]
24. Kianipour S, Ardestani ME, Dehghan p. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods. Adv Biomed Res. 2018;7:66. [Link] [DOI:10.4103/abr.abr_138_17]
25. West TP. Citric acid production by Candida species grown on a soy-based crude glycerol. Prep Biochem Biotechnol. 2013;43(6):601-11. [Link] [DOI:10.1080/10826068.2012.762929]
26. Murray MP, Zinchuk R, Larone DH. CHROMagar Candida as the Sole Primary Medium for Isolation of Yeasts and as a Source Medium for the Rapid-Assimilation-of-Trehalose Test. J Clin Microbiol. 2005;43(3):1210-12.27- Van 27- Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res. 2009;9(2):178-90. [Link] [DOI:10.1111/j.1567-1364.2008.00462.x]
27. 27- Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res. 2009;9(2):178-90. [Link] [DOI:10.1111/j.1567-1364.2008.00462.x]
28. Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, et al. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem. 2003;278(22):20345-57. [Link] [DOI:10.1074/jbc.M211604200]
29. Velazquez-Carriles C, Macias-Rodríguez ME, Carbajal-Arizaga GG. Immobilizing yeast β-glucan on zinc-layered hydroxide nanoparticle improves innate immune response in fish leukocytes. Fish Shellfish Immunol. 2018;82:504-13. [Link] [DOI:10.1016/j.fsi.2018.08.055]
30. Verduyn C, Stouthamer AH, Alexander Scheffers W, Van Dijken JP. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek. 1991;59(1):49-63. [Link] [DOI:10.1007/BF00582119]
31. Fast D. Sporulation synchrony of Saccharomyces cerevisiae grown in various carbon sources. J Bacteriol. 1973;116(2):925-30. [Link]
32. Bardócz S. The role of dietary polyamines. Eur J Clin Nutr. 1993;47(10):683-90. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.