Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 45-51 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moasses Ghafary S, Nikkhah M, Hatamie S, Hosseinkhani S. Design and Preparation of Photoluminescent Nanoparticles based on Chimeric Peptides- Graphene Quantum Dots for Nuclear Drug Delivery and Tracking. JMBS 2019; 10 (1) :45-51
URL: http://biot.modares.ac.ir/article-22-15124-en.html
1- Nanobiothechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
3- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Post Address: Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116
Abstract:   (8056 Views)
​One of the main challenges in the treatment of genetic disorders, such as cancer, is of drug delivery systems and their inability to monitor and track delivered drug to the targeted site. Therefore, the design of novel with dual capabilities of nuclear drug delivery and tracking into a research priority for this field’s The aim of this study is to design based on both non-cytotoxic quantum dots and chimeric peptides, with dual tracking and delivering small genetic agents into the nucleus. The GQDs with green emission color were synthesized by Hummer’s and methods and characterized by UV-Vis, photoluminescence (PL), Raman spectroscopies, and scanning electron microscopy (SEM). conjugated with MPG-2H1 chimeric peptides through noncovalent interactions. Following conjugation step, the ζ-potential of the complex increased (From -38.6 to -11.1 in complex1, -9.6 in complex2 and -5.74 in complex3). The conjugation was confirmed by native acrylamide gel retardation assay. The of the GQDs was investigated by MTT assay and finally, was carried out. The results showed that MPG-2H1/ GQD complexes can enter cells; however, free-GQDs didn’t enter the cells significantly.
Full-Text [PDF 702 kb]   (3275 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/01/12 | Accepted: 2017/08/30 | Published: 2019/03/16

References
1. Sakhrani NM, Padh H. Organelle targeting: Third level of drug targeting. Drug Des Devel Ther. 2013;7:585-99. [Link]
2. Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9(1):29-42. [Link] [DOI:10.1038/nrd2897]
3. Verma IM, Somia N. Gene therapy -- promises, problems and prospects. Nature. 1997;389(6648):239-42. [Link] [DOI:10.1038/38410]
4. Gardlík R, Pálffy R, Hodosy J, Lukács J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit. 2005;11(4):RA110-21. [Link]
5. Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: Technology development and clinical trials. Technol Cancer Res Treat. 2003;2(5):471-86. [Link] [DOI:10.1177/153303460300200513]
6. Min SH, Kim DM, Kim MN, Ge J, Lee DC, Park IY, et al. Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials. 2010;31(7):1858-64. [Link] [DOI:10.1016/j.biomaterials.2009.11.019]
7. Wang Y, Mangipudi SS, Canine BF, Hatefi A. A designer biomimetic vector with a chimeric architecture for targeted gene transfer. J Control Release. 2009;137(1):46-53. [Link] [DOI:10.1016/j.jconrel.2009.03.005]
8. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39(3 Pt 2):499-509. [Link] [DOI:10.1016/0092-8674(84)90457-4]
9. Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. Eur J Pharm Biopharm. 2016;107:191-204. [Link] [DOI:10.1016/j.ejpb.2016.06.017]
10. Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S. Design and bioinformatics analysis of novel biomimetic peptides as nanocarriers for gene transfer. Nanomed J. 2015;2(1):29-38. [Link]
11. Wang H, Chen X. Applications for site-directed molecular imaging agents coupled with drug delivery potential. Expert Opin Drug Deliv. 2009;6(7):745-68. [Link] [DOI:10.1517/17425240902889751]
12. Sahoo H. Fluorescent labeling techniques in biomolecules: A flashback. RSC Adv. 2012;2(18):7017-29. [Link] [DOI:10.1039/c2ra20389h]
13. Jung D, Min K, Jung J, Jang W, Kwon Y. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Mol Biosyst. 2013;9(5):862-72. [Link] [DOI:10.1039/c2mb25422k]
14. Marks KM, Nolan GP. Chemical labeling strategies for cell biology. Nat Methods. 2006;3(8):591-6. [Link] [DOI:10.1038/nmeth906]
15. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc. 2014;2014(10):pdb.top071795. [Link]
16. Dsouza RN, Pischel U, Nau WM. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev. 2011;111(12):7941-80. [Link] [DOI:10.1021/cr200213s]
17. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:143-62. [Link] [DOI:10.1146/annurev-anchem-060908-155136]
18. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996;100(2):468-71. [Link] [DOI:10.1021/jp9530562]
19. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale. 2013;5(10):4015-39. [Link] [DOI:10.1039/c3nr33849e]
20. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun (Camb). 2012;48(31):3686-99. [Link] [DOI:10.1039/c2cc00110a]
21. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, et al. Optically tunable amino-functionalized graphene quantum dots. Adv Mater. 2012;24(39):5333-8. [Link] [DOI:10.1002/adma.201201930]
22. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb). 2011;47(24):6858-60. [Link] [DOI:10.1039/c1cc11122a]
23. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C. 2013;1(31):4676-84. [Link] [DOI:10.1039/c3tc30820k]
24. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190-5. [Link] [DOI:10.1039/C4TB00015C]
25. Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. [Link] [DOI:10.1021/ja01539a017]
26. Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5:5357. [Link] [DOI:10.1038/ncomms6357]
27. Drummen GP. Fluorescent probes and fluorescence (microscopy) techniques--illuminating biological and biomedical research. Molecules. 2012;17(12):14067-90. [Link] [DOI:10.3390/molecules171214067]
28. Chua CK, Sofer Z, Šimek P, Jankovský O, Klímová K, Bakardjieva S, et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano. 2015;9(3):2548-55. [Link] [DOI:10.1021/nn505639q]
29. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S. Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133(26):9960-3. [Link] [DOI:10.1021/ja2036749]
30. Liu R, Wu D, Feng X, Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133(39):15221-3. [Link] [DOI:10.1021/ja204953k]
31. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater. 2011;23(6):776-80. [Link] [DOI:10.1002/adma.201003819]
32. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844-9. [Link] [DOI:10.1021/nl2038979]
33. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem. 2012;22(15):7461-7. [Link] [DOI:10.1039/c2jm16835a]
34. Wang C, Wu C, Zhou X, Han T, Xin X, Wu J, et al. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep. 2013;3:2852. [Link] [DOI:10.1038/srep02852]
35. Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9):872-92. [Link] [DOI:10.7150/thno.9404]
36. Lv Y, Tao L, Annie Bligh SW, Yang H, Pan Q, Zhu L. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater Sci Eng C Mater Biol Appl. 2016;59:652-60. [Link] [DOI:10.1016/j.msec.2015.10.065]
37. Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, et al. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater. 2015;25(34):5472-8. [Link] [DOI:10.1002/adfm.201502506]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.