Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 37-44 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoodi Tarkhorani S, Sanjarian Dehaghani F, Monsef Shokri M. The effect of salicylic acid treatment on the antioxidant enzyme activities in Thymus vulgaris seedlings. JMBS 2019; 10 (1) :37-44
URL: http://biot.modares.ac.ir/article-22-15497-en.html
1- Biology Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
2- Plant Bioproducts Group, Institute Agriculture Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran, Shahrak-e Pajoohesh, 15 Kilometer of Tehran-Karaj Highway, Tehran, Iran. Postal Code: 1497716316 , fsanjarian@nigeb.ac.ir
3- International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
Abstract:   (8114 Views)
Aims: Thymus Garden (Thymus vulgaris L.) is one of the economically important plants which is extremely sensitive to oxidative stress and drought stress during germination time. Salicylic acid, as an herbal hormone, plays an important role in increasing plant tolerance to biotic and abiotic stresses. The current study was conducted aiming to increase the plant resistance to environmental stress by increasing its enzymatic and non-enzymatic antioxidant capacity by salicylic acid treatment.
Materials & Methods: In this experimental study, the plant seeds were soaked in 2mM salicylic acid solution a randomized complete block design with three replicates for 16 hours, and they were then planted in pots. Pots were transferred to growth chamber with constant and controlled conditions for 16 hours of light: 8 hours of dark at a temperature of 25°C for 14 days. At the end of the experiment, the growth parameters of plants, germination percentage, phenol content, and the activity of the important antioxidant enzymes, such as superoxide dismutase, catalase, polyphenol oxidase and peroxidase, were measured and compared with the control group.
Findings: Although salicylic acid did not have a significant impact on plant growth, it has led to an effective of antioxidant enzymes in the plant. Moreover, this treatment has increased the antioxidant content of the plant.
Conclusion: Treatment with salicylic acid could result in an increase in Garden Thyme tolerance to stress conditions.
Full-Text [PDF 645 kb]   (2712 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/03/10 | Accepted: 2017/10/18 | Published: 2019/03/16

1. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035-42. [Link] [DOI:10.1021/np9904509]
2. Rocha-Guzmán NE, Herzog A, González-Laredo RF, Ibarra-Pérez FJ, Zambrano-Galván G, Gallegos-Infante JA. Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem. 2007;103(2):521-7. [Link] [DOI:10.1016/j.foodchem.2006.08.021]
3. Bahari AA, Sokhtesaraei R, Chaghazardi HR, Masoudi F, Nazarli H. Effect of water deficit stress and foliar application of salicylic acid on antioxidants enzymes activity in leaves of Thymus daenensis subsp. lancifolius. Cercet Agron Mold. 2015;48(1):57-67. [Link] [DOI:10.1515/cerce-2015-0017]
4. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89(3):217-33. [Link] [DOI:10.1016/j.fbp.2010.04.008]
5. Kindl M, Blažeković B, Bucar F, Vladimir-Knežević S. Antioxidant and anticholinesterase potential of six thymus species. Evid Based Complement Alternat Med. 2015;2015:403950. [Link] [DOI:10.1155/2015/403950]
6. Smith BJ. SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM, editor. Proteins. 1st Edition. 1st Volume. New York: Humana Press; 1984. pp. 41-55. [Link] [DOI:10.1385/0-89603-062-8:41]
7. McGimpsey JA, Douglas MH, Van Klink JW, Beauregard DA, Perry NB. Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Fragr J. 1994;9(6):347-52. [Link] [DOI:10.1002/ffj.2730090613]
8. Jamzad Z. Thymus and Satureja species of Iran. 1st Edition. Tehran: Research Institute of Forests & Rangelands; 2009. [Persian] [Link]
9. Mozaffarian V. Identification of medicinal and aromatic plants of Iran. 1st Edition. Tehran: Farhang Moaser Publishers; 2015. [Persian] [Link]
10. Morton JF. Major medicinal plants: Botany, culture and uses. 1st Edition. Springfield: Charles C Thomas Publishers; 1977. [Link]
11. Tabrizi Raeini L, Koocheki A, Nassiri Mahallati M, Rezvani Moghaddam P. Germination behaviour of cultivated and natural stand seeds of Khorasan thyme (Thymus transcaspicus. Klokov) with application of regression models. Iran J Field Crops Res. 2008;5(2):249-57. [Persian] [Link]
12. Nasiri M, Seedian SE, Sharifi Ashorabadi E. Investigation of seed germination, establishment and identification of different Thymus species available in Natural Resources Gene Bank of Iran. Iran J Med Aromat Plants. 2016;32(1):115-26. [Persian] [Link]
13. Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000;30(2):157-61. [Link] [DOI:10.1023/A:1006386800974]
14. Zamani E, Sanjarian F, Mohammadi Goltapeh E, Safaie N. Studying the resistance of wheat seedlings grown from treated seeds with salicylic acid against Mycosphaerella graminicola. Plant Prot. 2016;39(1):1-14. [Persian] [Link]
15. Fletcher RS, Kott LS. Phenolics and cold tolerance of Brassica napus. Proceedings of the 10th International Rapeseed Congress, 26-29 September, 1999, Canberra, Australia. Unknown Publisher City: Unknown publisher; 1999. [Link]
16. Khanpour Ardestani N, Sharifi M, Behmanesh M. Effect of methyl jasmonate on antioxidant enzyme activities, phenolic and flavonoid compounds in Scrophularia striata cell culture. J Plant Res. 2015;27(5):840-53. [Persian] [Link]
17. Chance B, Maehly AC. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO, editors. Methods in Enzymology. 2nd Volume. Cambridge: Academic Press; 1955. pp. 764-75. [Link] [DOI:10.1016/S0076-6879(55)02300-8]
18. Dhindsa RS, Matowe W. Drought tolerance in two mosses: Correlated with enzymatic defence against lipid peroxidation. J Exp Bot. 1981;32(1):79-91. [Link] [DOI:10.1093/jxb/32.1.79]
19. Plewa MJ, Smith SR, Wagner ED. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res. 1991;247(1):57-64. [Link] [DOI:10.1016/0027-5107(91)90033-K]
20. Beauchamp Ch, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-87. [Link] [DOI:10.1016/0003-2697(71)90370-8]
21. Sudhakar Ch, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001;161(3):613-9. [Link] [DOI:10.1016/S0168-9452(01)00450-2]
22. Raymond J, Rakariyatham N, Azanza JL. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry. 1993;34(4):927-31. [Link] [DOI:10.1016/S0031-9422(00)90689-7]
23. Khan W, Prithiviraj B, Smith DL. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol. 2003;160(5):485-92. [Link] [DOI:10.1078/0176-1617-00865]
24. Guan L, Scandalios JG. Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci. 1995;92(13):5930-4. [Link] [DOI:10.1073/pnas.92.13.5930]
25. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 2006;141(3):910-23. [Link] [DOI:10.1104/pp.106.082057]
26. Fariduddin Q, Hayat S, Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica. 2003;41(2):281-4. [Link] [DOI:10.1023/B:PHOT.0000011962.05991.6c]
27. Hayat S, Fariduddin Q, Ali B, Ahmad A. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung. 2005;53(4):433-7. [Link] [DOI:10.1556/AAgr.53.2005.4.9]
28. Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: Its role in plant growth and development. J Exp Bot. 2011;62(10):3321-38. [Link] [DOI:10.1093/jxb/err031]
29. Gutiérrez-Coronado MA, Trejo-López C, Larqué-Saavedra A. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem. 1998;36(8):563-5. [Link] [DOI:10.1016/S0981-9428(98)80003-X]
30. Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003;164(3):317-22. [Link] [DOI:10.1016/S0168-9452(02)00415-6]
31. Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol. 2007;164(6):728-36. [Link] [DOI:10.1016/j.jplph.2005.12.009]
32. Kováčik J, Grúz J, Bačkor M, Strnad M, Repčák M. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 2009;28(1):135-43. [Link] [DOI:10.1007/s00299-008-0627-5]
33. Solecka D. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant. 1997;19(3):257-68. [Link] [DOI:10.1007/s11738-997-0001-1]
34. Chu YH, Chang CL, Hsu HF. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric. 2000;80(5):561-6. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-# [Link] [DOI:10.1002/(SICI)1097-0010(200004)80:53.0.CO;2-#]
35. He Y, Zhu ZJ. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biol Plant. 2008;52(4):792-5. [Link] [DOI:10.1007/s10535-008-0155-8]
36. Lajara MM, López-Orenes A, Ferrer MA, Calderón AA. Long-term exposure treatments revert the initial SA-induced alterations of phenolic metabolism in grapevine cell cultures. Plant Cell Tissue Organ Cult. 2015;122(3):665-73. [Link] [DOI:10.1007/s11240-015-0800-9]
37. Asghari GR, Ghasemi R, Yosefi M, Mehdinezhad N. Effect of hormones, salicylic acid, chitosan on phenolic compounds in Artemisia aucheri in vitro. J Plant Proc Func. 2015;3(10):93-100. [Persian] [Link]
38. Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, et al. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol. 2006;40(1):64-72. [Link] [DOI:10.1016/j.postharvbio.2005.12.017]
39. López-Orenes A, Martínez-Moreno JM, Calderón AA, Ferrer MA. Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus. Plant Cell Tissue Organ Cult. 2013;113(3):417-27. [Link] [DOI:10.1007/s11240-012-0281-z]
40. Parida AK, Das AB. Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf. 2005;60(3):324-49. [Link] [DOI:10.1016/j.ecoenv.2004.06.010]
41. Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 2008;165(9):920-31. [Link] [DOI:10.1016/j.jplph.2006.11.014]
42. Panda SK, Patra HK. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant. 2007;29(6):567-75. [Link] [DOI:10.1007/s11738-007-0069-7]
43. Choudhury S, Panda SK. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol. 2004;30(3-4):95-110. [Link]
44. Ojha S, Chatterjee N. Induction of resistance in tomato plants against Fusarium oxysporum F. sp. Lycopersici mediated through salicylic acid and Trichoderma harzianum. J Plant Prot Res. 2012;52(2):220-5. [Link] [DOI:10.2478/v10045-012-0034-3]
45. Hayat S, Ali B, Ahmad A. Salicylic acid: Biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A, editors. Salicylic acid: A plant hormone. 1st Edition. Dordrecht: Springer; 2007. pp. 1-14 _1 [Link] [DOI:10.1007/1-4020-5184-0]
46. Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul. 2007;26(3):290-300. [Link] [DOI:10.1007/s00344-007-9017-4]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.