1. Reece JB, Urry LA, Cain ML, Jackson RB, Wasserman SA, Minorsky PV. Campbell biology. 9th Edition. San Francisco: Benjamin Cummings; 2010. [
Link]
2. Lodish HF, Berk A, Kaiser CA, Krieger M, Scott MP. Molecular cell biology. 6th Edition. New York: Macmillan Higher Education; 2007. [
Link]
3. De Jong H. Modeling and simulation of genetic regulatory systems: A literature review. J Comput Biol. 2002;9(1):67-103. [
Link] [
DOI:10.1089/10665270252833208]
4. Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. Gene regulatory network inference: Data intgrtion in dynamic models-a review. Biosystems. 2009;96(1):86-103. [
Link] [
DOI:10.1016/j.biosystems.2008.12.004]
5. Reverter A, Chan EKF. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics. 2008;24(21):2491-7. [
Link] [
DOI:10.1093/bioinformatics/btn482]
6. De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Micro-biol. 2010;8(10):717-29. [
Link] [
DOI:10.1038/nrmicro2419]
7. Kabir M, Noman N, Iba H. Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC Bioinform. 2010;11(1):S56. [
Link] [
DOI:10.1186/1471-2105-11-S1-S56]
8. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci. 2010;107(14):6286-91. [
Link] [
DOI:10.1073/pnas.0913357107]
9. Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale gene networks. PLoS One. 2012;7(1):e29348. [
Link] [
DOI:10.1371/journal.pone.0029348]
10. Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinform. 2007;8(6):S9. [
Link] [
DOI:10.1186/1471-2105-8-S6-S9]
11. Pavesi G, Valentini G. Classification of co-expressed genes from DNA regulatory regions. Inf Fusion. 2009;10(3):233-41. [
Link] [
DOI:10.1016/j.inffus.2008.11.005]
12. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776. [
Link] [
DOI:10.1371/journal.pone.0012776]
13. Ruan J, Dean AK, Zhang W. A general co-expression network-based approach to gene expression analy-sis: Comparison and applications. BMC Syst Biol. 2010;4:8. [
Link] [
DOI:10.1186/1752-0509-4-8]
14. Raman K. Construction and analysis of protein-protein interaction networks. Autom Exp. 2010;2(1):2. [
Link] [
DOI:10.1186/1759-4499-2-2]
15. Martin Sh, Zhang Z, Martino A, Faulon JL. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics. 2007;23(7):866-74. [
Link] [
DOI:10.1093/bioinformatics/btm021]
16. Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell. 2004;117(2):185-98. [
Link] [
DOI:10.1016/S0092-8674(04)00304-6]
17. Mahdevar G, Nowzari-Dalini A, Sadeghi M. Inferring gene correlation networks from transcription factor binding sites. Genes Genet Syst. 2013;88(5):301-9. [
Link] [
DOI:10.1266/ggs.88.301]
18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unifica-tion of biology. Nat Genet. 2000;25(1):25-9. [
Link] [
DOI:10.1038/75556]
19. Rhee SY, Wood V, Dolinski K, Draghici S. Use and misuse of the gene ontology annotations. Nat Rev Genet. 2008;9(7):509-15. [
Link] [
DOI:10.1038/nrg2363]
20. Allocco DJ, Kohane IS, Butte AJ. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinform. 2004;5(1):18. [
Link] [
DOI:10.1186/1471-2105-5-18]
21. Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinform. 2007;8(1):299. [
Link] [
DOI:10.1186/1471-2105-8-299]
22. Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform. 2014;15(Suppl 7):S10. [
Link] [
DOI:10.1186/1471-2105-15-S7-S10]
23. Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, Martinez-Cruz LA, et al. Correlation between gene expression and GO semantic similarity. IEEE ACM Trans Comput Biol Bioinform. 2005;2(4):330-8. [
Link] [
DOI:10.1109/TCBB.2005.50]
24. Wang H, Azuaje F, Bodenreider O, Dopazo J. Gene expression correlation and gene ontology-based simi-larity: An assessment of quantitative relationships. Symposium on Computational Intelligence in Bioinformat-ics and Computational Biology, 7-8 October, 2004, La Jolla, California, USA. Piscataway: IEEE; 2004. pp. 25-31. [
Link]
25. Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to prob-lems of ambiguity in natural language. J Artif Intell Res. 1999;11:95-130. [
Link] [
DOI:10.1613/jair.514]
26. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics. 2007;23(10):1274-81. [
Link] [
DOI:10.1093/bioinformatics/btm087]
27. Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved ge-netic modules. Science. 2003;302(5643):249-55. [
Link] [
DOI:10.1126/science.1087447]
28. Kohonen T. Self-organization and associative memory. 3rd Edition. Heidelberg: Springer; 1989. [
Link] [
DOI:10.1007/978-3-642-88163-3]
29. Shalev-Shwartz Sh, Ben-David Sh. Understanding machine learning: From theory to algorithms. 1st Edi-tion. Cambridge: Cambridge University Press; 2014. [
Link]
30. Alpaydin E. Introduction to machine learning. 2nd Edition. Cambridge: MIT Press; 2010. [
Link]
31. Han J, Kamber M. Data mining: Concepts and techniques. 2nd Edition. Amsterdam: Elsevier; 2006. [
Link]
32. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd Edition. New York: Springer; 2009. [
Link] [
DOI:10.1007/978-0-387-84858-7]
33. Werbos PJ. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Cam-bridge: Harvard University; 1974. [
Link]
34. Barabasi AL, Oltvai ZN. Network biology: Understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101-13. [
Link] [
DOI:10.1038/nrg1272]
35. Bergmann S, Ihmels J, Barkai N. Similarities and differences in genome-wide expression data of six organ-ism. PLoS Biol. 2004;2(1):e9. [
Link] [
DOI:10.1371/journal.pbio.0020009]
36. Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics. 2003;19(2):270-7. [
Link] [
DOI:10.1093/bioinformatics/19.2.270]
37. Kim H, Shin J, Kim E, Kim H, Hwang S, Shim JE, et al. YeastNet v3: A public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res. 2013;42(D1):D731-6. [
Link] [
DOI:10.1093/nar/gkt981]
38. Martínez-Ballesteros M, Nepomuceno-Chamorro IA, Riquelme JC. Discovering gene association networks by multi-objective evolutionary quantitative association rules. J Comput Syst Sci. 2014;80(1):118-36. [
Link] [
DOI:10.1016/j.jcss.2013.03.010]
39. Haykin S. Neural networks: A comprehensive foundation. 2nd Edition. New Jersey: Pearson Education Canada; 1998. [
Link]
40. Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics. 2007;23(13):1640-7. [
Link] [
DOI:10.1093/bioinformatics/btm163]
41. Soinov LA, Krestyaninova MA, Brazma A. Towards reconstruction of gene networks from expression data by supervised learning. Genome Biol. 2003;4(1):R6. [
Link] [
DOI:10.1186/gb-2003-4-1-r6]
42. Nepomuceno-Chamorro IA, Aguilar-Ruiz JS, Riquelme JC. Inferring gene regression networks with model trees. BMC Bioinform. 2010;11:517. [
Link] [
DOI:10.1186/1471-2105-11-517]
43. Bulashevska S, Eils R. Inferring genetic regulatory logic from expression data. Bioinformatics. 2005;21(11):2706-13. [
Link] [
DOI:10.1093/bioinformatics/bti388]
44. Ponzoni I, Azuaje F, Augusto J, Glass D. Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning. IEEE ACM Trans Comput Biol Bioin-form. 2007;4(4):624-34. [
Link] [
DOI:10.1109/tcbb.2007.1049]