Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 287-295 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behmanesh M, ghasemi R, mirahmadi zare S Z. Optimization of magnetic nano particles synthesis for biological application. JMBS 2019; 10 (2) :287-295
URL: http://biot.modares.ac.ir/article-22-15750-en.html
1- Tarbiat Modares university, Tehran
2- Nanobiotechnology, faculty of biological sciences, Tarbiat Modares university, Tehran, tehran
3- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Isfahan
Abstract:   (4447 Views)
In recent years, many studies have been performed on for use in various of science. The proper design and synthesis of these has a direct impact on their -chemical properties and their applications, especially in the field of biological sciences. There are several methods for magnetic synthesis. One of the simplest and most efficient methods for synthesis of magnetic is a chemical co-precipitation method, but of magnetic is one of the limitations of this method. In this study, various protocols for the synthesis of magnetic by co-precipitation method and silica coating of magnetic were performed and the effect of different factors such as the type of alkaline compound, the use of , temperature and in dispersion, aggregation of magnetic nanoparticles and their stability in aqueous solutions was investigated. Finally, a simple and reproducible protocol for magnetic synthesis with appropriate size distribution and high dispersion in aqueous solutions was optimized for use in biological applications.
Full-Text [PDF 755 kb]   (2492 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/08/19 | Accepted: 2017/10/24 | Published: 2019/06/20

1. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3(3):311-21. [Link] [DOI:10.2147/IJN.S2824]
2. Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392-3. [Link] [DOI:10.1021/ja031776d]
3. Liberti, PA, Rao CG, Terstappen LWMM. Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater. 2001;225(1-2):301-7. [Link] [DOI:10.1016/S0304-8853(00)01254-3]
4. Rosengart AJ, Kaminski MD, Chen H, Caviness PL, Ebner AD, Ritter JA. Magnetizable implants and functionalized magnetic carriers: A novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater. 2005;293(1):633-8. [Link] [DOI:10.1016/j.jmmm.2005.01.087]
5. Zeng L, Luo K, Gong Y. Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J Mol Catal B Enzym. 2006;38(1):24-30. [Link] [DOI:10.1016/j.molcatb.2005.10.007]
6. Kim EH, Lee HS, Kwak BK, Kim BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater. 2005;289:328-30. [Link] [DOI:10.1016/j.jmmm.2004.11.093]
7. Bohara RA, Pawar SH. Innovative developments in bacterial detection with magnetic nanoparticles. Appl Biochem Biotechnol. 2015;176(4):1044-58. [Link] [DOI:10.1007/s12010-015-1628-9]
8. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res. 1998;89(7):775-82. [Link] [DOI:10.1111/j.1349-7006.1998.tb03283.x]
9. Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H. Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem. 2006;384(3):593-600. [Link] [DOI:10.1007/s00216-005-0255-7]
10. Benz M. Superparamagnetism: Theory and applications [Internet]. Zürich: ETH Zürich; 2012 [cited 2017 may 20]. Available from: https://www.microstructure.ethz.ch/FILE/1302_Superparamagnetism_ManuelBenz.pdf [Link]
11. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818-78. [Link] [DOI:10.1021/cr300068p]
12. Ma J, Fan Q, Wang L, Jia N, Gu Z, Shen H. Synthesis of magnetic and fluorescent bifunctional nanocomposites and their applications in detection of lung cancer cells in humans. Talanta. 2010;81(4-5):1162-9. [Link] [DOI:10.1016/j.talanta.2010.01.042]
13. Wang X, Liu LH, Ramström O, Yan M. Engineering nanomaterial surfaces for biomedical applications. Exp Biol Med (Maywood). 2009;234(10):1128-39. [Link] [DOI:10.3181/0904-MR-134]
14. Khoshnevisan K, Bordbar A, Zare D, Davoodi D, Noruzi M, Barkhi M, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J. 2011;171(2):669-73. [Link] [DOI:10.1016/j.cej.2011.04.039]
15. Khan K, Rehman S, Rahman H, Khan Q. Synthesis and application of magnetic nanoparticles. In: Gonzalez Estevez JM. Nanomagnetism. One Central Press (OCP): UK; 2014. [Link]
16. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-110. [Link] [DOI:10.1021/cr068445e]
17. Liu CX, Liu Q, Guo CC. Synthesis and catalytic abilities of silica-coated Fe3O4 nanoparticle bonded metalloporphyrins with different saturation magnetization. Catal Lett. 2010;138(1-2):96-103. [Link] [DOI:10.1007/s10562-010-0379-z]
18. Ranjbakhsh E, Bordbar A, Abbasi M, Khosropour AR, Shams E. Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem Eng J. 2012;179:272-6. [Link] [DOI:10.1016/j.cej.2011.10.097]
19. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397-415. [Link] [DOI:10.1007/s11671-008-9174-9]
20. Nagarajan S, Li Z, Marchi-Artzner V, Grasset F, Zhang Y. Imaging gap junctions with silica-coated upconversion nanoparticles. Med Biol Eng Comput. 2010;48(10):1033-41. [Link] [DOI:10.1007/s11517-010-0618-x]
21. McCarthy SA, Davies GL, Gun'ko YK. Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc. 2012;7(9):1677-93. [Link] [DOI:10.1038/nprot.2012.082]
22. Hui C, Shen C, Yang T, Bao L, Tian J, Ding H, et al. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J Phys Chem C. 2008;112(30):11336-9. [Link] [DOI:10.1021/jp801632p]
23. Hui C, Shen C, Tian J, Bao L, Ding H, Li C, et al. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale. 2011;3(2):701-5. [Link] [DOI:10.1039/C0NR00497A]
24. Bahrami K, Sheikh Arabi M. Copper immobilized ferromagnetic nanoparticle triazine dendrimer (FMNP@TD-Cu(II))-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. New J Chem. 2016;40(4):3447-55. [Link] [DOI:10.1039/C5NJ03219A]
25. Yang D, Hu J, Fu Sh. Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach. J Phys Chem C. 2009;113(18):7646-51. [Link] [DOI:10.1021/jp900868d]
26. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17(2):1247-8. [Link] [DOI:10.1109/TMAG.1981.1061188]
27. Chang J, Waclawik ER. Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media. RSC Adv. 2014;4(45):23505-27. [Link] [DOI:10.1039/C4RA02684E]
28. Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun (Camb). 2003;(8):927-34. [Link] [DOI:10.1039/b207789b]
29. Bhattacharjee S. DLS and zeta potential - what they are and what they are not?. J Control Release. 2016;235:337-51. [Link] [DOI:10.1016/j.jconrel.2016.06.017]
30. Guo J, Yang W, Deng Y, Wang C, Fu S. Organic‐dye‐coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small. 2005;1(7):737-43. [Link] [DOI:10.1002/smll.200400145]
31. Fuentes M, Mateo C, Guisán JM, Fernández-Lafuente R. Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosens Bioelectron. 2005;20(7):1380-7. [Link] [DOI:10.1016/j.bios.2004.06.004]
32. Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314(1):274-80. [Link] [DOI:10.1016/j.jcis.2007.05.047]
33. Ziolo RF, Giannelis EP, Weinstein BA, O'Horo MP, Ganguly BN, Mehrotra V, et al. Matrix-mediated synthesis of nanocrystalline γ-Fe2O3: A new optically transparent magnetic material. Science. 1992;257(5067):219-23. [Link] [DOI:10.1126/science.257.5067.219]
34. Shen L, Laibinis PE, Alan Hatton T. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir. 1999;15(2):447-53. [Link] [DOI:10.1021/la9807661]
35. Hong RY, Li JH, Li HZ, Ding J, Zheng Y, Wei DG. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J Magn Magn Mater. 2008;320(9):1605-14. [Link] [DOI:10.1016/j.jmmm.2008.01.015]
36. Massart R, Cabuil V. Alkaline synthesis of colloidal magnetite: control of particle yield and particle size. Journal de Chimie Physique. 1987;84:967-73. [French] [Link] [DOI:10.1051/jcp/1987840967]
37. Sun Sh, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204-5. [Link] [DOI:10.1021/ja026501x]
38. Babes L, Denizot B, Tanguy G, Jacques Le Jeune J, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J Colloid Interface Sci. 1999;212(2):474-82. [Link] [DOI:10.1006/jcis.1998.6053]
39. Gribanov NM, Bibik EE, Buzunov OV, Naumov VN. Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater. 1990;85(1-3):7-10. [Link] [DOI:10.1016/0304-8853(90)90005-B]
40. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci. 2004;3(1):66-73. [Link] [DOI:10.1109/TNB.2003.820277]
41. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater. 2001;225(1-2):30-6. [Link] [DOI:10.1016/S0304-8853(00)01224-5]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.