1. Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol. 2015;40:142-52. [
Link] [
DOI:10.1016/j.semcdb.2015.03.003]
2. Dobson CM, Šali A, Karplus M. Protein folding: A perspective from theory and experiment. Angew Chem Int Ed Engl. 1998;37(7):868-93.
https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H [
Link] [
DOI:10.1002/(SICI)1521-3773(19980420)37:73.0.CO;2-H]
3. Izaddoust Kordmahaleh M, Ghafoori H, Sarikhan S, Heidari B. Identification and sequence analysis of cDNA encoding the 90-kDa heat shock protein (Hsp90) from the Caspian kutum Rutilus frisii kutum. Aquat Physiol Biotechnol. 2017;4(4):1-12. [Persian] [
Link]
4. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324-32. [
Link] [
DOI:10.1038/nature10317]
5. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A. 1991;88(7):2874-8. [
Link] [
DOI:10.1073/pnas.88.7.2874]
6. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science. 1996;272(5268):1606-14. [
Link] [
DOI:10.1126/science.272.5268.1606]
7. Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670-84. [
Link] [
DOI:10.1007/s00018-004-4464-6]
8. Rappa F, Farina F, Zummo G, David S, Campanella C, Carini F, et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: An overview. Anticancer Res. 2012;32(12):5139-50. [
Link]
9. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl). 2003;81(11):678-99. [
Link] [
DOI:10.1007/s00109-003-0464-5]
10. Yamaguchi H, Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules. 2014;4(1):235-51. [
Link] [
DOI:10.3390/biom4010235]
11. Jia Q, Luo Y. The selective roles of chaperone systems on over-expression of human-like collagen in recombinant Escherichia coli. J Ind Microbiol Biotechnol. 2014;41(11):1667-75. [
Link] [
DOI:10.1007/s10295-014-1500-x]
12. Nishihara K, Kanemori M, Kitagawa M,Yanagi H, Yura T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol. 1998;64(5):1694-9. [
Link]
13. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol. 1998;64(5):1694-9. [
Link]
14. Ghafoori H, Askari M, Sarikhan S. Molecular cloning, expression and functional characterization of the 40-kDa heat shock protein, DnaJ, from Bacillus halodurans. Process Biochem. 2017;54:33-40. [
Link] [
DOI:10.1016/j.procbio.2016.12.017]
15. Schlecht R, Erbse AH, Bukau B, Mayer MP. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol. 2011;18(3):345-51. [
Link] [
DOI:10.1038/nsmb.2006]
16. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A. 2009;106(21):8471-6. [
Link] [
DOI:10.1073/pnas.0903503106]
17. Nicoll WS, Boshoff A, Ludewig MH, Hennessy F, Jung M, Blatch GL. Approaches to the isolation and characterization of molecular chaperones. Protein Expr Purif. 2006;46(1):1-15. [
Link] [
DOI:10.1016/j.pep.2005.08.005]
18. Yang J, Nune M, Zong Y, Zhou L, Liu Q. Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure. 2015;23(12):2191-203. [
Link] [
DOI:10.1016/j.str.2015.10.012]